期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Fault Diagnosis Model Based on Feature Compression with Orthogonal Locality Preserving Projection 被引量:14
1
作者 TANG Baoping LI Feng QIN Yi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期891-898,共8页
Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machi... Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis. 展开更多
关键词 orthogonal locality preserving projectionolpp manifold learning feature compression Morlet wavelet support vector machine(MWSVM) empirical mode decomposition(EMD) fault diagnosis
下载PDF
正交局部保持投影早期故障特征提取方法 被引量:8
2
作者 梁礼明 吴武林 吴健 《机械设计与研究》 CSCD 北大核心 2016年第2期143-146,共4页
针对轴承早期故障特征难以提取,提出了一种基于正交局部保持投影的轴承故障特征提取方法。由时域指标和小波频带能量组成高维特征空间。运用正交局部保持投影方法通过训练样本数据求出正交转换矩阵,测试样本经正交转换矩阵转化后得到低... 针对轴承早期故障特征难以提取,提出了一种基于正交局部保持投影的轴承故障特征提取方法。由时域指标和小波频带能量组成高维特征空间。运用正交局部保持投影方法通过训练样本数据求出正交转换矩阵,测试样本经正交转换矩阵转化后得到低维向量。利用不同故障样本的类间散度和同种故障样本的类内散度两个指标来衡量该方法的有效性,通过滚动轴承故障数据的仿真,证明提出的正交局部保持投影的特征提取方法是有效的。 展开更多
关键词 正交局部保持投影 特征提取 滚动轴承
原文传递
基于OLPP和信息向量机的人脸识别 被引量:5
3
作者 刘建伟 徐翔 罗雄麟 《计算机工程》 CAS CSCD 北大核心 2010年第7期200-202,共3页
结合正交局部保持投影(OLPP)和信息向量机(IVM),提出用于人脸识别的OLPP-IVM算法。应用OLPP对原始人脸图像数据进行特征提取,利用IVM在降维后的数据上实现人脸分类。与主成分分析、线性判别分析等算法的比较实验证明,用该算法进行人脸... 结合正交局部保持投影(OLPP)和信息向量机(IVM),提出用于人脸识别的OLPP-IVM算法。应用OLPP对原始人脸图像数据进行特征提取,利用IVM在降维后的数据上实现人脸分类。与主成分分析、线性判别分析等算法的比较实验证明,用该算法进行人脸识别误差更小,性能更优越。 展开更多
关键词 信息向量机 正交局部保持投影 人脸识别 特征提取 多类分类
下载PDF
基于时空建模的锂离子电池温度预测
4
作者 吕洲 何波 宋连 《电池》 CAS 北大核心 2024年第4期497-502,共6页
锂离子电池温度具有时空耦合、强非线性和时变特性,建立准确的预测模型有困难。提出一种基于时空建模的锂离子电池温度分布预测方法。利用正交局部保持投影(OLPP)将电池温度分离为正交空间基函数和时间系数。以电流、电压为输入,时间系... 锂离子电池温度具有时空耦合、强非线性和时变特性,建立准确的预测模型有困难。提出一种基于时空建模的锂离子电池温度分布预测方法。利用正交局部保持投影(OLPP)将电池温度分离为正交空间基函数和时间系数。以电流、电压为输入,时间系数为输出,建立基于带遗忘因子的在线顺序超限学习机(FFOS-ELM)的低阶时序模型。通过时空合成,重构出原始的温度分布。三元软包装锂离子电池温度预测结果表明,与基于拉普拉斯特征映射和在线顺序极限学习机的在线时空建模方法(LE-OS-ELM)相比,所提方法的预测精度更高,在恒流放电和城市动力测驾循环(UDDS)工况下,时间标准绝对误差分别在(0.030,0.155)和(0.095,0.110)区间内,均方根误差分别为0.097 2及0.108 4。 展开更多
关键词 锂离子电池温度 在线时空建模 正交局部保持投影(olpp) 带遗忘因子的在线顺序超限学习机(FFOS-ELM)
下载PDF
基于正交局部保持映射和成本优化的多变量时间序列早期分类模型
5
作者 袁子璇 翁小清 戈宁振 《计算机应用》 CSCD 北大核心 2024年第6期1832-1841,共10页
时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本... 时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。 展开更多
关键词 多变量时间序列 早期分类 正交局部保持映射 成本优化 高斯过程分类器
下载PDF
基于OLPP符号表示的时间序列分类算法
6
作者 武天鸿 翁小清 《计算机应用与软件》 北大核心 2021年第1期303-312,共10页
基于符号表示的时间序列分类方法是时间序列数据挖掘的关键技术。大部分现有方法主要针对单个时间序列样本进行符号表示,没有考虑样本间的近邻关系对符号化分类的影响。对此提出一种基于正交局部保持映射(Orthogonal Locality Preservin... 基于符号表示的时间序列分类方法是时间序列数据挖掘的关键技术。大部分现有方法主要针对单个时间序列样本进行符号表示,没有考虑样本间的近邻关系对符号化分类的影响。对此提出一种基于正交局部保持映射(Orthogonal Locality Preserving Projection,OLPP)的时间序列符号表示方法。使用OLPP对原始数据集进行维数约减,利用信息增益寻找维数约减后数据的最佳符号投影区间,采用多重系数分箱技术(Multiple Coefficient Binning,MCB)将降维后数据表示成符号序列。该算法在20个时间序列数据集上的分类效果好于已有方法,有效利用样本间的近邻关系能够显著提高算法的分类性能。 展开更多
关键词 时间序列分类 符号表示 正交局部保持映射 信息增益
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部