This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 1...This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 10^-6 cm^2/W induced by thermo-optical effect is obtained. It indicates that the sample has excellent optical non- linear properties. The physical mechanism of the great nonlinear optical effect is analysed and the optical conjugate characteristic is also discussed with degenerate four-wave-mixing. The phase conjugate wave diffracted from the formative refractive index grating in the sample is acquired and its equivalent reflectivity reaches about 22%. On this basis, the reflective wave phase-conjugated mirror system was designed, and the image aberration experienced in propagation in the storage experiment is corrected by using the system.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 19834030 and 50533010).
文摘This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 10^-6 cm^2/W induced by thermo-optical effect is obtained. It indicates that the sample has excellent optical non- linear properties. The physical mechanism of the great nonlinear optical effect is analysed and the optical conjugate characteristic is also discussed with degenerate four-wave-mixing. The phase conjugate wave diffracted from the formative refractive index grating in the sample is acquired and its equivalent reflectivity reaches about 22%. On this basis, the reflective wave phase-conjugated mirror system was designed, and the image aberration experienced in propagation in the storage experiment is corrected by using the system.