A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.5...A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.展开更多
Porous organic polymers(POPs)have attracted extensive interest due to their structural diversity and predesigned functionality.However,the majority of POPs are synthesized as insoluble and unprocessable powders,which ...Porous organic polymers(POPs)have attracted extensive interest due to their structural diversity and predesigned functionality.However,the majority of POPs are synthesized as insoluble and unprocessable powders,which greatly impede their advanced applications because of limited mass transport and inadaptation for device integration.Herein,we report a controlled synthetic strategy of macroscopic POP gels by a cation-stabilized colloidal formation mechanism,which is widely adaptable to a large variety of tetra-/tri-amino build blocks for the synthesis of Tröger’s base-linked POP gels,aerogels,and ionic gels.The POP gels combined the integrated advantages of hierarchically porous structures and tailorable mechanical stiffness,whereas they could load substantial amounts of phosphoric acids and construct unimpeded transport pathways for proton conduction,exhibiting unprecedented proton conductivity at subzero temperatures.Our strategy offers a new solution to the intractable processing issues of POPs toward device applications with cutting-edge performances.展开更多
基金supported by the National Natural Science Foundation of China(21372087)~~
文摘A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.
基金supported by the National Natural Science Foundation of China (grant nos.21975078,21971074,22241501,and 92261117)the Fundamental Research Funds for the Central Universitiesthe start-up foundation of Sichuan University.
文摘Porous organic polymers(POPs)have attracted extensive interest due to their structural diversity and predesigned functionality.However,the majority of POPs are synthesized as insoluble and unprocessable powders,which greatly impede their advanced applications because of limited mass transport and inadaptation for device integration.Herein,we report a controlled synthetic strategy of macroscopic POP gels by a cation-stabilized colloidal formation mechanism,which is widely adaptable to a large variety of tetra-/tri-amino build blocks for the synthesis of Tröger’s base-linked POP gels,aerogels,and ionic gels.The POP gels combined the integrated advantages of hierarchically porous structures and tailorable mechanical stiffness,whereas they could load substantial amounts of phosphoric acids and construct unimpeded transport pathways for proton conduction,exhibiting unprecedented proton conductivity at subzero temperatures.Our strategy offers a new solution to the intractable processing issues of POPs toward device applications with cutting-edge performances.