More than 20 K-bentonite beds were discovered from the Wufeng Formation and the lowest Longmaxi Formation in two sections, both adjacent to the Ordovician-Silurian (O-S) bound-ary and located in Tongzi, Guizhou Provin...More than 20 K-bentonite beds were discovered from the Wufeng Formation and the lowest Longmaxi Formation in two sections, both adjacent to the Ordovician-Silurian (O-S) bound-ary and located in Tongzi, Guizhou Province and Yichang, Hubei Province, some 500 km apart from each other in South China. This indicates that many volcanic eruptions occurred near the southeast margin of the Yangtze Platform between the latest Ordovician and the earliest Silurian. Mainly through biostratigraphic and sequence stratigraphic studies, it was found that almost all these far-apart K-bentonite beds may be correlated with each other. This is the first time that a succession of volcanic ash deposits with high potential of correlation was discovered within a strata interval on the main platforms of China. Therefore, these K-bentonite beds may afford ex-cellent event-marker beds helpful to high-resolution research in integrated stratigraphy as well as other lines of research on the O-S boundary in South China.展开更多
The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the latest stage of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangji...The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the latest stage of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangjiawan North Section, which is the upper most "golden spike" of the Ordovician. However, this "golden spike" is lack of reliable geochronology data. This article gives a sensitive high resolution ion microprobe (SHRIMPII) zircon U-Pb dating for a K-bentonite sample from the Kuany-inchiao Bed in the Wangjiawan North Section. The age of the K-bentonite sample is 443.2±1.6 Ma, that is to say, the isotopic age of the uppermost of Hirnantian Stage, the point of Ordovician-Silurian boundary, should be near to, but slightly younger than 443.2±1.6 Ma. This age is identical to the Ordovi-cian-Silurian boundary age 443.7±1.5 Ma as declared by International Commission on Stratigraphy (ICS). So, this research provides some good geochronlogical data for the Hirnantian Stage and the Ordovician-Silurian boundary as well as the global correlation.展开更多
The trace element and rare earth element(REE) variations across the Ordovician-Silurian succession are presented from two outcrop sections on the Yangtze Platform:the Nanbazi section,Guizhou Province,deposited in a sh...The trace element and rare earth element(REE) variations across the Ordovician-Silurian succession are presented from two outcrop sections on the Yangtze Platform:the Nanbazi section,Guizhou Province,deposited in a shallow platform interior setting,and the Wangjiawan section,Hubei Province,deposited in a deeper basinal environment.Geochemical analysis of closely spaced samples through three intervals,the Wufeng,Guanyinqiao and Longmaxi,revealed vast palaeoceanographic changes.Some geochemical proxies,including Th/U,Ni/Co,V/Cr,and V/(V+Ni) ratios,together with sedimentary facies and biotic data,indicate that an anoxic condition on the most of the Yangtze Platform during the Wufeng and Longmaxi intervals,but an oxic condition during the Guanyinqiao time.The shift of the anoxic to the oxic environment during the Guanyinqiao time coincided with a global sea-level lowstand,in parallel with the global glaciation.The Longmaxian anoxic environment was a result of a global sea-level rise,which may be synchronized with a mainly catastrophic event in the latest Ordovician.Although the two sections generally show similar variation patterns of trace and REE concentrations and some element ratios,a minor difference occurs between the Wangjiawan and Nanbazi sections,likely reflecting a difference in depositional setting during the accumulation.Such an oceanic oxygen-level variation may add a useful constraint to the current arguments on the cause and consequence of the latest Ordovician mass extinction.展开更多
Systematic Ce anomalies for whole-rock have been obtained from the shale-dominated, continuous, and pelagic sedimentary sequences spanning the Ordovician/Silurian (O/S) boundary at the Tieshui (铁水) of Xiushan ...Systematic Ce anomalies for whole-rock have been obtained from the shale-dominated, continuous, and pelagic sedimentary sequences spanning the Ordovician/Silurian (O/S) boundary at the Tieshui (铁水) of Xiushan (秀山), Chongqing (重庆), South China. Ce anomalies across the O/S boundary are recognized in three intervals, Wufeng (五峰), Guanyinqiao (观音桥) and Longmaxi (龙马溪). The calculated Ce/Ce* values of Wufeng Formation range from 0.84 to 0.96 (avg. 0.90). In the Guanyinqiao Formation, the values of calculated Ce/Ce* range from 0.73 to 0.85 (avg. 0.79). The Ce/Ce* values of uppermost Longmaxi Formation range from 0.87 to 0.96 (avg. 0.91). All along the section, the magnitude of the Ce anomaly is always negative, but is more significant in the Guanyinqiao Formation. The relatively higher Ce/Ce* values in the Wufeng and Longmaxi shales are likely to be due to the sediments deposited under rather reducing conditions. The Ce anomaly apparently does play some regular roles in the anoxic events that accompany prominent mass extinctions, and this work provides new data of critical importance for constraining models on the end-Ordovician anoxic events and mass extinctions.展开更多
The abundance distributions of more than 40 elements in the No. 502 Ordovician-Silurian (O/S) bounda-ry section at Fenxiang, Yichang have been studied by RNAA and INAA. The results show that in the bounda-ry bed, ther...The abundance distributions of more than 40 elements in the No. 502 Ordovician-Silurian (O/S) bounda-ry section at Fenxiang, Yichang have been studied by RNAA and INAA. The results show that in the bounda-ry bed, there is a distinctive Ir anomaly because the Ir concentration abruptly increases to 0.64 ppb.Furthermore, the Ir is positively correlated in abundance variation with some siderophile and sulphophile ele-ments. In the same bed of the O/S boundary section at Huanghuachang, Yichang, there is also a δ^(13)C excur-sion. These geochemical signs support the hypothesis that the terminal Ordovician mass extinction was proba-bly related to extraterrestrial event, and provide new evidence for defining the O/S boundary between theHirnantia-Kinnella and G. persculptus Zones.展开更多
基金the National Natural Science Foundation of China(Grant No.49802002)the State Key Project of Sequence Stratigraphy and Earth Rhythms the Lab of Earth Surface Systems of Hubei Province.
文摘More than 20 K-bentonite beds were discovered from the Wufeng Formation and the lowest Longmaxi Formation in two sections, both adjacent to the Ordovician-Silurian (O-S) bound-ary and located in Tongzi, Guizhou Province and Yichang, Hubei Province, some 500 km apart from each other in South China. This indicates that many volcanic eruptions occurred near the southeast margin of the Yangtze Platform between the latest Ordovician and the earliest Silurian. Mainly through biostratigraphic and sequence stratigraphic studies, it was found that almost all these far-apart K-bentonite beds may be correlated with each other. This is the first time that a succession of volcanic ash deposits with high potential of correlation was discovered within a strata interval on the main platforms of China. Therefore, these K-bentonite beds may afford ex-cellent event-marker beds helpful to high-resolution research in integrated stratigraphy as well as other lines of research on the O-S boundary in South China.
基金the Notional Natural Science Foundation of China (Grant No.40525010)
文摘The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the latest stage of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangjiawan North Section, which is the upper most "golden spike" of the Ordovician. However, this "golden spike" is lack of reliable geochronology data. This article gives a sensitive high resolution ion microprobe (SHRIMPII) zircon U-Pb dating for a K-bentonite sample from the Kuany-inchiao Bed in the Wangjiawan North Section. The age of the K-bentonite sample is 443.2±1.6 Ma, that is to say, the isotopic age of the uppermost of Hirnantian Stage, the point of Ordovician-Silurian boundary, should be near to, but slightly younger than 443.2±1.6 Ma. This age is identical to the Ordovi-cian-Silurian boundary age 443.7±1.5 Ma as declared by International Commission on Stratigraphy (ICS). So, this research provides some good geochronlogical data for the Hirnantian Stage and the Ordovician-Silurian boundary as well as the global correlation.
基金Supported by National Basic Research Program of China (Grant No.2005CB422101)
文摘The trace element and rare earth element(REE) variations across the Ordovician-Silurian succession are presented from two outcrop sections on the Yangtze Platform:the Nanbazi section,Guizhou Province,deposited in a shallow platform interior setting,and the Wangjiawan section,Hubei Province,deposited in a deeper basinal environment.Geochemical analysis of closely spaced samples through three intervals,the Wufeng,Guanyinqiao and Longmaxi,revealed vast palaeoceanographic changes.Some geochemical proxies,including Th/U,Ni/Co,V/Cr,and V/(V+Ni) ratios,together with sedimentary facies and biotic data,indicate that an anoxic condition on the most of the Yangtze Platform during the Wufeng and Longmaxi intervals,but an oxic condition during the Guanyinqiao time.The shift of the anoxic to the oxic environment during the Guanyinqiao time coincided with a global sea-level lowstand,in parallel with the global glaciation.The Longmaxian anoxic environment was a result of a global sea-level rise,which may be synchronized with a mainly catastrophic event in the latest Ordovician.Although the two sections generally show similar variation patterns of trace and REE concentrations and some element ratios,a minor difference occurs between the Wangjiawan and Nanbazi sections,likely reflecting a difference in depositional setting during the accumulation.Such an oceanic oxygen-level variation may add a useful constraint to the current arguments on the cause and consequence of the latest Ordovician mass extinction.
基金This study was supported by the National Natural ScienceFoundation of China (No. 40903032)the Research Foundationfor Outstanding Young Teachers,China University of Geo-sciences (Wuhan)Key Laboratory of Biogeology and En-vironmental Geology of Ministry of Education,China University of Geosciences (No.BGEGF200810)
文摘Systematic Ce anomalies for whole-rock have been obtained from the shale-dominated, continuous, and pelagic sedimentary sequences spanning the Ordovician/Silurian (O/S) boundary at the Tieshui (铁水) of Xiushan (秀山), Chongqing (重庆), South China. Ce anomalies across the O/S boundary are recognized in three intervals, Wufeng (五峰), Guanyinqiao (观音桥) and Longmaxi (龙马溪). The calculated Ce/Ce* values of Wufeng Formation range from 0.84 to 0.96 (avg. 0.90). In the Guanyinqiao Formation, the values of calculated Ce/Ce* range from 0.73 to 0.85 (avg. 0.79). The Ce/Ce* values of uppermost Longmaxi Formation range from 0.87 to 0.96 (avg. 0.91). All along the section, the magnitude of the Ce anomaly is always negative, but is more significant in the Guanyinqiao Formation. The relatively higher Ce/Ce* values in the Wufeng and Longmaxi shales are likely to be due to the sediments deposited under rather reducing conditions. The Ce anomaly apparently does play some regular roles in the anoxic events that accompany prominent mass extinctions, and this work provides new data of critical importance for constraining models on the end-Ordovician anoxic events and mass extinctions.
文摘The abundance distributions of more than 40 elements in the No. 502 Ordovician-Silurian (O/S) bounda-ry section at Fenxiang, Yichang have been studied by RNAA and INAA. The results show that in the bounda-ry bed, there is a distinctive Ir anomaly because the Ir concentration abruptly increases to 0.64 ppb.Furthermore, the Ir is positively correlated in abundance variation with some siderophile and sulphophile ele-ments. In the same bed of the O/S boundary section at Huanghuachang, Yichang, there is also a δ^(13)C excur-sion. These geochemical signs support the hypothesis that the terminal Ordovician mass extinction was proba-bly related to extraterrestrial event, and provide new evidence for defining the O/S boundary between theHirnantia-Kinnella and G. persculptus Zones.