期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
非参数可加模型的迭代自适应稳健变量选择
1
作者 朱能辉 尤进红 徐群芳 《应用概率统计》 CSCD 北大核心 2024年第2期201-228,共28页
本文结合稳健损失函数、B样条逼近和自适应组Lasso研究一个高维可加模型,以识别“大p小n”下的不显著协变量.与传统的最小二乘自适应组Lasso相比,该方法具有较好的抵消重尾误差和异常值的影响.为证明方便,本文进一步考虑了更一般的加权... 本文结合稳健损失函数、B样条逼近和自适应组Lasso研究一个高维可加模型,以识别“大p小n”下的不显著协变量.与传统的最小二乘自适应组Lasso相比,该方法具有较好的抵消重尾误差和异常值的影响.为证明方便,本文进一步考虑了更一般的加权稳健组Lasso估计,且该权向量对所建议的估计量具有模型选择oracle性质和渐近正态性的证明中起着关键作用.稳健组Lasso和自适应稳健组Lasso可以看作是加权稳健组Lasso在不同权向量下的特殊情况.在实际应用中,我们使用稳健组Lasso获得初始估计以降低问题的维数,然后使用迭代自适应稳健组Lasso选择非零分量.数值结果表明,所提出的方法对中等规模的样本具有良好的适用性.高维基因TRIM32数据验证了该方法的应用. 展开更多
关键词 自适应组Lasso 高维数据 非参数回归 oracle性质 稳健估计
下载PDF
Statistical Inference for Partially Linear Regression Models with Measurement Errors 被引量:6
2
作者 Jinhong YOU Qinfeng XU Bin ZHOU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第2期207-222,共16页
In this paper,the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors.Firstly, a bandwidth selection procedure is propos... In this paper,the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors.Firstly, a bandwidth selection procedure is proposed,which is a combination of the differencebased technique and GCV method.Secondly,a goodness-of-fit test procedure is proposed, which is an extension of the generalized likelihood technique.Thirdly,a variable selection procedure for the parametric part is provided based on the nonconcave penalization and corrected profile least squares.Same as"Variable selection via nonconcave penalized likelihood and its oracle properties"(J.Amer.Statist.Assoc.,96,2001,1348-1360),it is shown that the resulting estimator has an oracle property with a proper choice of regularization parameters and penalty function.Simulation studies are conducted to illustrate the finite sample performances of the proposed procedures. 展开更多
关键词 Partially linear model Measurement error Bandwidth selection Goodness-of-fit test oracle property
原文传递
Logistic回归的ArctanLASSO惩罚似然估计及应用 被引量:5
3
作者 秦磊 谢邦昌 《数量经济技术经济研究》 CSSCI 北大核心 2015年第6期135-146,共12页
Logistic回归是计量经济学中应用最广的离散选择模型。当变量个数较多时,极大似然估计解释性较差,为此本文基于新的惩罚函数ArctanLASSO,给出Logistic回归的一种非凸惩罚似然估计进行参数估计和变量选取,并证明了估计量的n^(1/2)相合性... Logistic回归是计量经济学中应用最广的离散选择模型。当变量个数较多时,极大似然估计解释性较差,为此本文基于新的惩罚函数ArctanLASSO,给出Logistic回归的一种非凸惩罚似然估计进行参数估计和变量选取,并证明了估计量的n^(1/2)相合性和Oracle性质。本文结合二阶近似处理、LLA方法和梯度下降法给出估计算法,并通过最小化BIC准则对正则化参数进行选取。模拟数据分析显示,当样本量较大时,该方法在参数估计和变量选取两个方面都优于传统的LASSO、SCAD和MCP方法,样本量较小时,该方法同样具有很大优势。实际数据分析表明,该方法很好地权衡了拟合程度和非零系数的选择,是最优的备选模型,具有重要的实际意义。 展开更多
关键词 LOGISTIC回归 ArctanLASSO惩罚似然估计 n^1/2相合性 oracle性质
原文传递
高维纵向数据的惩罚expectile估计
4
作者 樊梅红 李婷婷 《西南师范大学学报(自然科学版)》 CAS 2023年第6期70-80,共11页
基于期望分位数(expectile)回归理论,提出高维纵向数据的惩罚expectile(PGEEE)估计,在正则条件下,建立了估计量的Oracle性质.数值模拟和实证结果表明,PGEEE估计在实现变量选择的同时,提供了模型回归系数的相合估计,并且该方法可以有效... 基于期望分位数(expectile)回归理论,提出高维纵向数据的惩罚expectile(PGEEE)估计,在正则条件下,建立了估计量的Oracle性质.数值模拟和实证结果表明,PGEEE估计在实现变量选择的同时,提供了模型回归系数的相合估计,并且该方法可以有效识别异方差,刻画数据的异质结构,挖掘数据中更丰富的信息. 展开更多
关键词 expectile 惩罚expectile估计方程 oracle性质 异方差
下载PDF
Logistic回归模型的一种改进弹性网估计 被引量:3
5
作者 蒋仕旗 戴家佳 《数学理论与应用》 2022年第2期108-119,共12页
为提升Logistic回归模型在分类问题上的应用表现,本文将自适应Lasso和自适应Ridge结合,建立双重自适应弹性网.双重自适应弹性网同时具有oracle性质和自适应分组效应,这确保了它在一定的假设前提下,能有效估计参数和准确选取重要变量,进... 为提升Logistic回归模型在分类问题上的应用表现,本文将自适应Lasso和自适应Ridge结合,建立双重自适应弹性网.双重自适应弹性网同时具有oracle性质和自适应分组效应,这确保了它在一定的假设前提下,能有效估计参数和准确选取重要变量,进而使所建立的Logistic回归模型变得简而精.模拟和实例分析表明,双重自适应弹性网适用于具有自适应分组效应的中度或高度相关情形,其提升Logistic回归的表现等同于或高于弹性网及其部分改进法. 展开更多
关键词 LOGISTIC回归 弹性网 oracle性质 自适应分组效应 参数估计
下载PDF
删失回归模型中SCAD型变量选择与估计(英文) 被引量:4
6
作者 刘显慧 王占锋 吴耀华 《中国科学技术大学学报》 CAS CSCD 北大核心 2013年第3期182-189,共8页
删失回归模型是一种很重要的响应变量受限制的模型,它广泛应用于计量经济学中.基于SCAD罚函数,提出了SCAD型罚变量选择方法.该方法可选出重要的回归变量,即真参数中非零系数,同时给出非零参数相合估计.另外,证明了变量选择方法是相合的... 删失回归模型是一种很重要的响应变量受限制的模型,它广泛应用于计量经济学中.基于SCAD罚函数,提出了SCAD型罚变量选择方法.该方法可选出重要的回归变量,即真参数中非零系数,同时给出非零参数相合估计.另外,证明了变量选择方法是相合的,具有oracle性质.最后,进行数值模拟计算说明所提出方法的效果。 展开更多
关键词 删失回归模型 变量选择 oracle性质
下载PDF
多元回归中选择自变量的一种简单方法 被引量:3
7
作者 陈家鼎 李东风 《应用概率统计》 CSCD 北大核心 2015年第1期71-88,共18页
在线性回归模型建模中,回归自变量选择是一个受到广泛关注、文献众多,具有很强的理论和实际意义的问题.回归自变量选择子集的相合性是其中一个重要问题,如果某种自变量选择方法选择的子集在样本量趋于无穷时是相合的,而且预测均方误差较... 在线性回归模型建模中,回归自变量选择是一个受到广泛关注、文献众多,具有很强的理论和实际意义的问题.回归自变量选择子集的相合性是其中一个重要问题,如果某种自变量选择方法选择的子集在样本量趋于无穷时是相合的,而且预测均方误差较小,则这种方法是可取的.利用BIC准则可以挑选相合的自变量子集,但是在自变量个数很多时计算量过大;适应lasso方法具有较高计算效率,也能找到相合的自变量子集;本文提出一种更简单的自变量选择方法,只需要计算两次普通线性回归:第一次进行全集回归,得到全集的回归系数估计,然后利用这些回归系数估计挑选子集,然后只要在挑选的自变量子集上再进行一次普通线性回归就得到了回归结果.考虑如下的回归模型:Y_n=X_nβ~*+ε^((n)),其中回归系数β~*中非零分量下标的集合为J_O,设J_n是本文方法选择的自变量子集下标集合,β^((n))是本文方法估计的回归系数(未选中的自变量对应的系数为零),本文证明了,在适当条件下,(?)其中(β^((n))-β~*)J_O表示β^((n))-β~*的分量下标在J_O中的元素的组成的向量,σ~2是误差方差,∑,c是与矩阵(X_n^TX_n)/n极限有关的矩阵和常数.数值模拟结果表明本文方法具有很好的中小样本性质. 展开更多
关键词 变量选择 回归分析 oracle property
下载PDF
Semiparametric Model Averaging for Ultrahigh-Dimensional Conditional Quantile Prediction
8
作者 Chao Hui GUO Jing LV +2 位作者 Hu YANG Jing Wen TU Chen Xiao TIAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第6期1171-1202,共32页
In this paper,we develop a flexible semiparametric model averaging marginal regression procedure to forecast the joint conditional quantile function of the response variable for ultrahighdimensional data.First,we appr... In this paper,we develop a flexible semiparametric model averaging marginal regression procedure to forecast the joint conditional quantile function of the response variable for ultrahighdimensional data.First,we approximate the joint conditional quantile function by a weighted average of one-dimensional marginal conditional quantile functions that have varying coefficient structures.Then,a local linear regression technique is employed to derive the consistent estimates of marginal conditional quantile functions.Second,based on estimated marginal conditional quantile functions,we estimate and select the significant model weights involved in the approximation by a nonconvex penalized quantile regression.Under some relaxed conditions,we establish the asymptotic properties for the nonparametric kernel estimators and oracle estimators of the model averaging weights.We further derive the oracle property for the proposed nonconvex penalized model averaging procedure.Finally,simulation studies and a real data analysis are conducted to illustrate the merits of our proposed model averaging method. 展开更多
关键词 Kernel regression model averaging oracle property penalized quantile regression ultrahigh-dimension data
原文传递
Quantile Regression of Ultra-high Dimensional Partially Linear Varying-coefficient Model with Missing Observations
9
作者 Bao Hua Wang Han Ying Liang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第9期1701-1726,共26页
In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the ... In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the responses and part of the covariates are missing at random,and the ultra-high dimension implies that the dimension of parameter is much larger than sample size.Based on the B-spline method for the varying coefficient functions,we study the consistency of the oracle estimator which is obtained only using active covariates whose coefficients are nonzero.At the same time,we discuss the asymptotic normality of the oracle estimator for the linear parameter.Note that the active covariates are unknown in practice,non-convex penalized estimator is investigated for simultaneous variable selection and estimation,whose oracle property is also established.Finite sample behavior of the proposed methods is investigated via simulations and real data analysis. 展开更多
关键词 Missing observation oracle property partially linear varying-coefficient model quantile regression ultra-high dimension
原文传递
The Adaptive LASSO Spline Estimation of Single-Index Model 被引量:4
10
作者 LU Yiqiang ZHANG Riquan HU Bin 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第4期1100-1111,共12页
In this paper, based on spline approximation, the authors propose a unified variable selection approach for single-index model via adaptive L1 penalty. The calculation methods of the proposed estimators are given on t... In this paper, based on spline approximation, the authors propose a unified variable selection approach for single-index model via adaptive L1 penalty. The calculation methods of the proposed estimators are given on the basis of the known lars algorithm. Under some regular conditions, the authors demonstrate the asymptotic properties of the proposed estimators and the oracle properties of adaptive LASSO(aL ASSO) variable selection. Simulations are used to investigate the performances of the proposed estimator and illustrate that it is effective for simultaneous variable selection as well as estimation of the single-index models. 展开更多
关键词 Adaptive LASSO B-SPLINE oracle property single-index model variable selection.
原文传递
Penalized M-Estimation Based on Standard Error Adjusted Adaptive Elastic-Net
11
作者 WU Xianjun WANG Mingqiu +2 位作者 HU Wenting TIAN Guo-Liang LI Tao 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第3期1265-1284,共20页
When there are outliers or heavy-tailed distributions in the data, the traditional least squares with penalty function is no longer applicable. In addition, with the rapid development of science and technology, a lot ... When there are outliers or heavy-tailed distributions in the data, the traditional least squares with penalty function is no longer applicable. In addition, with the rapid development of science and technology, a lot of data, enjoying high dimension, strong correlation and redundancy, has been generated in real life. So it is necessary to find an effective variable selection method for dealing with collinearity based on the robust method. This paper proposes a penalized M-estimation method based on standard error adjusted adaptive elastic-net, which uses M-estimators and the corresponding standard errors as weights. The consistency and asymptotic normality of this method are proved theoretically. For the regularization in high-dimensional space, the authors use the multi-step adaptive elastic-net to reduce the dimension to a relatively large scale which is less than the sample size, and then use the proposed method to select variables and estimate parameters. Finally, the authors carry out simulation studies and two real data analysis to examine the finite sample performance of the proposed method. The results show that the proposed method has some advantages over other commonly used methods. 展开更多
关键词 Adaptive elastic net -estimation oracle property standard error
原文传递
Variable selection via generalized SELO-penalized linear regression models 被引量:2
12
作者 SHI Yue-yong CAO Yong-xiu +1 位作者 YU Ji-chang JIAO Yu-ling 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2018年第2期145-162,共18页
The seamless-L0 (SELO) penalty is a smooth function on [0, ∞) that very closely resembles the L0 penalty, which has been demonstrated theoretically and practically to be effective in nonconvex penalization for var... The seamless-L0 (SELO) penalty is a smooth function on [0, ∞) that very closely resembles the L0 penalty, which has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selection. In this paper, we first generalize SELO to a class of penalties retaining good features of SELO, and then propose variable selection and estimation in linear models using the proposed generalized SELO (GSELO) penalized least squares (PLS) approach. We show that the GSELO-PLS procedure possesses the oracle property and consistently selects the true model under some regularity conditions in the presence of a diverging number of variables. The entire path of GSELO-PLS estimates can be efficiently computed through a smoothing quasi-Newton (SQN) method. A modified BIC coupled with a continuation strategy is developed to select the optimal tuning parameter. Simulation studies and analysis of a clinical data are carried out to evaluate the finite sample performance of the proposed method. In addition, numerical experiments involving simulation studies and analysis of a microarray data are also conducted for GSELO-PLS in the high-dimensional settings. 展开更多
关键词 CONTINUATION coordinate descent BIC LLA oracle property SELO smoothing quasi-Newton
下载PDF
Variable selection for single-index varying-coefficient model 被引量:2
13
作者 Sanying FENG Liugen XUE 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第3期541-565,共25页
We consider the problem of variable selection for single-index varying-coefficient model, and present a regularized variable selection procedure by combining basis function approximations with SCAD penalty. The propos... We consider the problem of variable selection for single-index varying-coefficient model, and present a regularized variable selection procedure by combining basis function approximations with SCAD penalty. The proposed procedure simultaneously selects significant covariates with functional coefficients and local significant variables with parametric coefficients. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. The proposed method can naturally be applied to deal with pure single-index model and varying-coefficient model. Finite sample performances of the proposed method are illustrated by a simulation study and the real data analysis. 展开更多
关键词 Single-index varying-coefficient model variable selection SCAD oracle property
原文传递
再生核Hilbert空间展开的函数型回归模型变量选择 被引量:1
14
作者 田密 罗幼喜 《统计与决策》 CSSCI 北大核心 2022年第3期44-49,共6页
针对协变量是函数型、响应变量是标量的多元函数型回归模型,文章提出了函数系数基于再生核Hilbert空间展开的变量选择方法。首先,利用带积分余项的泰勒展开式和再生核Hilbert空间内积性质将模型转化为结构化形式,其次,通过自适应弹性网... 针对协变量是函数型、响应变量是标量的多元函数型回归模型,文章提出了函数系数基于再生核Hilbert空间展开的变量选择方法。首先,利用带积分余项的泰勒展开式和再生核Hilbert空间内积性质将模型转化为结构化形式,其次,通过自适应弹性网惩罚对结构化模型中的组间和组内系数同时进行压缩。结果证明了这种压缩估计具有Oracle性质,蒙特卡罗模拟结果也显示新方法在不同样本量、不同噪声和变量相关性干扰下均优于基于普通基函数展开的变量选择方法,且尤其适用于原始协变量高度相关的情形。最后,通过分析一个商品房平均销售价格影响因素数据演示了新方法的应用。 展开更多
关键词 函数型数据 再生核HILBERT空间 oracle性质 自适应弹性网
下载PDF
rLasso正则化Logistic回归模型的估计 被引量:2
15
作者 周生彬 高妍南 黄叶金 《统计与决策》 CSSCI 北大核心 2019年第12期22-26,共5页
文章将rLasso惩罚函数推广到Logistic回归模型,并给出单坐标rLasso惩罚估计问题的解析解,结合坐标下降算法思想,给出线性模型rLasso以及Logistic-rLasso惩罚估计问题的坐标下降求解方法。数值模拟验证所提坐标下降算法的有效性,并说明rL... 文章将rLasso惩罚函数推广到Logistic回归模型,并给出单坐标rLasso惩罚估计问题的解析解,结合坐标下降算法思想,给出线性模型rLasso以及Logistic-rLasso惩罚估计问题的坐标下降求解方法。数值模拟验证所提坐标下降算法的有效性,并说明rLasso惩罚比LASSO类惩罚能选择更为稀疏的模型。 展开更多
关键词 rLasso 坐标下降算法 LOGISTIC回归 广义线性模型 oracle性质
下载PDF
基于Servlet的小区物业管理系统开发 被引量:2
16
作者 徐文 马春江 《信息与电脑》 2018年第18期36-37,45,共3页
现在越来越多小区坐落在城市里,小区物业管理系统开发显得十分重要。此次管理系统开发的目的在于让业主以及物业管理人员都变得更方便。主要论述采用Java语言,Oracle 10g作为数据库,JSP作为前台界面,Servlet作为主要技术实现界面层、业... 现在越来越多小区坐落在城市里,小区物业管理系统开发显得十分重要。此次管理系统开发的目的在于让业主以及物业管理人员都变得更方便。主要论述采用Java语言,Oracle 10g作为数据库,JSP作为前台界面,Servlet作为主要技术实现界面层、业务逻辑层、数据层之间的人员信息管理、设备信息管理等七大功能模块,以达到本次系统开发的目的。 展开更多
关键词 物业管理 小区 SERVLET JSP oracle JAVA
下载PDF
高维广义线性模型的拟似然自适应Lasso估计 被引量:2
17
作者 陈夏 崔艳 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期1-9,共9页
利用惩罚拟似然方法,讨论高维广义线性模型的拟似然自适应Lasso估计。该方法能同时进行变量选择和参数估计。在适当的条件下,证明了所得估计的相合性和Oracle性质,并利用数据模拟和实例分析说明了所提方法的优良性质。
关键词 广义线性模型 惩罚拟似然 变量选择 oracle性质
下载PDF
基于JAVA技术的物业管理系统设计 被引量:2
18
作者 王禹程 《自动化与仪器仪表》 2018年第10期147-149,152,共4页
物业管理行业客户众多、事物繁杂、覆盖面广的特点,给管理工作带来了困难。针对这些问题,建立一个基于数字化的管理系统,整合各种资源,并提升社区的物业管理水平,是各个物业公司必须考虑的问题。文中从物业管理的实际需求出发,通过JAVA... 物业管理行业客户众多、事物繁杂、覆盖面广的特点,给管理工作带来了困难。针对这些问题,建立一个基于数字化的管理系统,整合各种资源,并提升社区的物业管理水平,是各个物业公司必须考虑的问题。文中从物业管理的实际需求出发,通过JAVA编程语言,在Windows操作系统上,利用Eclipse平台和Oracle Database数据库,设计一套物业管理系统。该系统实现了用户的综合管理,主要包括收费管理、家政服务、水电管理、维修管理和投诉管理等内容。同时实现了小区用户各项基本信息的登记、修改、查询,从而能够高效、快速地实现对用户信息的管理,减少了物业管理人员的劳动强度,且提高了企业的管理水平和市场竞争力。 展开更多
关键词 物业管理 JAVA语言 ECLIPSE平台 oracle Database数据库
原文传递
Model Detection and Variable Selection for Varying Coefficient Models with Longitudinal Data 被引量:1
19
作者 San Ying FENG Yu Ping HU Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第3期331-350,共20页
In this puper, we consider the problem of variabie selection and model detection in varying coefficient models with longitudinM data. We propose a combined penalization procedure to select the significant variables, d... In this puper, we consider the problem of variabie selection and model detection in varying coefficient models with longitudinM data. We propose a combined penalization procedure to select the significant variables, detect the true structure of the model and estimate the unknown regression coefficients simultaneously. With appropriate selection of the tuning parameters, we show that the proposed procedure is consistent in both variable selection and the separation of varying and constant coefficients, and the penalized estimators have the oracle property. Finite sample performances of the proposed method are illustrated by some simulation studies and the real data analysis. 展开更多
关键词 Combined penalization longitudinal data model detection variable selection oracle property varying coefficient model
原文传递
Penalized least squares estimation with weakly dependent data 被引量:2
20
作者 FAN JianQing QI Lei TONG Xin 《Science China Mathematics》 SCIE CSCD 2016年第12期2335-2354,共20页
In statistics and machine learning communities, the last fifteen years have witnessed a surge of high-dimensional models backed by penalized methods and other state-of-the-art variable selection techniques.The high-di... In statistics and machine learning communities, the last fifteen years have witnessed a surge of high-dimensional models backed by penalized methods and other state-of-the-art variable selection techniques.The high-dimensional models we refer to differ from conventional models in that the number of all parameters p and number of significant parameters s are both allowed to grow with the sample size T. When the field-specific knowledge is preliminary and in view of recent and potential affluence of data from genetics, finance and on-line social networks, etc., such(s, T, p)-triply diverging models enjoy ultimate flexibility in terms of modeling, and they can be used as a data-guided first step of investigation. However, model selection consistency and other theoretical properties were addressed only for independent data, leaving time series largely uncovered. On a simple linear regression model endowed with a weakly dependent sequence, this paper applies a penalized least squares(PLS) approach. Under regularity conditions, we show sign consistency, derive finite sample bound with high probability for estimation error, and prove that PLS estimate is consistent in L_2 norm with rate (s log s/T)~1/2. 展开更多
关键词 weakly dependent high-dimensional model oracle property model selection consistency penalized least squares
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部