Atmospheric particulate and polycyclic aromatic hydrocarbons (PAHs) size distribution were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan during the rice straw burning and non-b...Atmospheric particulate and polycyclic aromatic hydrocarbons (PAHs) size distribution were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan during the rice straw burning and non-burning periods. The concentrations of total PAHs accounting for a roughly 58% (34%) increment in the concentrations of total PAHs due to rice-straw burning. Combustion-related PAHs during burning periods were 1.54-2.57 times higher than those during non-burning periods. The mass median diameter (MMD) of 0.88-1.21 μm in the particulate phase suggested that rice-straw burning generated the increase in coarse particle number. Chemical mass balance (CMB) receptor model analyses showed that the primary pollution sources at the two sites were similar. However, ricestraw burning emission was specifically identified as a significant source of PAH during burning periods at the two sites. Open burning of rice straws was estimated to contribute approximately 6.3%-24.6% to total atmospheric PAHs at the two sites.展开更多
Black carbon(BC) has importance regarding aerosol composition, radiative balance, and human exposure. This study adopted a backward-trajectory approach to quantify the origins of BC from anthropogenic emissions(BCAn) ...Black carbon(BC) has importance regarding aerosol composition, radiative balance, and human exposure. This study adopted a backward-trajectory approach to quantify the origins of BC from anthropogenic emissions(BCAn) and open biomass burning(BCBB) transported to Xishuangbanna in 2017. Haze months, between haze and clean months, and clean months in Xishuangbanna were defined according to daily PM_(2.5)concentrations of >75, 35–75, and<35 μg/m^(3), respectively. Results showed that the transport efficiency density(TED) of BC transported to Xishuangbanna was controlled by the prevailing winds in different seasons.The yearly contributions to the effective emission intensity of BCAnand BCBBtransported to Xishuangbanna were 52% and 48%, respectively. However, when haze occurred in Xishuangbanna, the average BCAnand BCBBcontributions were 23% and 77%, respectively. This suggests that open biomass burning(BB) becomes the dominant source in haze months. Myanmar, India, and Laos were the dominant source regions of BC transported to Xishuangbanna during haze months, accounting for 59%, 18%, and 13% of the total, respectively. Furthermore, India was identified as the most important source regions of BCAntransported to Xishuangbanna in haze months, accounting for 14%. The two countries making the greatest contributions to BCBBtransported to Xishuangbanna were Myanmar and Laos in haze months, accounting for 55% and 13%, respectively. BC emissions from Xishuangbanna had minimal effects on the results of the present study. It is suggested that open BB in Myanmar and Laos, and anthropogenic emissions in India were responsible for poor air quality in Xishuangbanna.展开更多
基金The Central Taiwan University of Science and Technology supported this work under the grant 94-INS-024
文摘Atmospheric particulate and polycyclic aromatic hydrocarbons (PAHs) size distribution were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan during the rice straw burning and non-burning periods. The concentrations of total PAHs accounting for a roughly 58% (34%) increment in the concentrations of total PAHs due to rice-straw burning. Combustion-related PAHs during burning periods were 1.54-2.57 times higher than those during non-burning periods. The mass median diameter (MMD) of 0.88-1.21 μm in the particulate phase suggested that rice-straw burning generated the increase in coarse particle number. Chemical mass balance (CMB) receptor model analyses showed that the primary pollution sources at the two sites were similar. However, ricestraw burning emission was specifically identified as a significant source of PAH during burning periods at the two sites. Open burning of rice straws was estimated to contribute approximately 6.3%-24.6% to total atmospheric PAHs at the two sites.
基金supported by the National Natural Science Foundation of China (Nos. 41705109 and 41805098)State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (No. SCAPC_(2)02001)+1 种基金State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry (No. 2018B04)Tsinghua National Laboratory for Information Science and Technology。
文摘Black carbon(BC) has importance regarding aerosol composition, radiative balance, and human exposure. This study adopted a backward-trajectory approach to quantify the origins of BC from anthropogenic emissions(BCAn) and open biomass burning(BCBB) transported to Xishuangbanna in 2017. Haze months, between haze and clean months, and clean months in Xishuangbanna were defined according to daily PM_(2.5)concentrations of >75, 35–75, and<35 μg/m^(3), respectively. Results showed that the transport efficiency density(TED) of BC transported to Xishuangbanna was controlled by the prevailing winds in different seasons.The yearly contributions to the effective emission intensity of BCAnand BCBBtransported to Xishuangbanna were 52% and 48%, respectively. However, when haze occurred in Xishuangbanna, the average BCAnand BCBBcontributions were 23% and 77%, respectively. This suggests that open biomass burning(BB) becomes the dominant source in haze months. Myanmar, India, and Laos were the dominant source regions of BC transported to Xishuangbanna during haze months, accounting for 59%, 18%, and 13% of the total, respectively. Furthermore, India was identified as the most important source regions of BCAntransported to Xishuangbanna in haze months, accounting for 14%. The two countries making the greatest contributions to BCBBtransported to Xishuangbanna were Myanmar and Laos in haze months, accounting for 55% and 13%, respectively. BC emissions from Xishuangbanna had minimal effects on the results of the present study. It is suggested that open BB in Myanmar and Laos, and anthropogenic emissions in India were responsible for poor air quality in Xishuangbanna.