A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of r...A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of leastsquares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the onestep local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations.展开更多
A one-step method is proposed to estimate the unknown functions in the varying coefficient models, in which the unknown functions admit different degrees of smoothness. In this method polynomials of different orders a...A one-step method is proposed to estimate the unknown functions in the varying coefficient models, in which the unknown functions admit different degrees of smoothness. In this method polynomials of different orders are used to approximate unknown functions with different degrees of smoothness. As only one minimization operation is employed, the required computation burden is much less than that required by the existing two-step estimation method. It is shown that the one-step estimators also achieve the optimal convergence rate. Moreover this property is obtained under conditions milder than that imposed in the two-step estimation method. More importantly, as only one minimization operation is employed, the full asymptotic properties, not only the asymptotic bias and variance, but also the asymptotic distributions of the estimators can be derived. The asymptotic distribution results will play a key role for making statistical inference.展开更多
This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very m...This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However, for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.展开更多
Semivarying coefficient models are frequently used in statistical models.In this paper,under the condition that the coefficient functions possess different degrees of smoothness,a two-stepmethod is proposed.In the cas...Semivarying coefficient models are frequently used in statistical models.In this paper,under the condition that the coefficient functions possess different degrees of smoothness,a two-stepmethod is proposed.In the case,one-step method for the smoother coefficient functions cannot beoptimal.This drawback can be repaired by using the two-step estimation procedure.The asymptoticmean-squared error for the two-step procedure is obtained and is shown to achieve the optimal rate ofconvergence.A few simulation studies are conducted to evaluate the proposed estimation methods.展开更多
文摘A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of leastsquares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the onestep local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations.
文摘A one-step method is proposed to estimate the unknown functions in the varying coefficient models, in which the unknown functions admit different degrees of smoothness. In this method polynomials of different orders are used to approximate unknown functions with different degrees of smoothness. As only one minimization operation is employed, the required computation burden is much less than that required by the existing two-step estimation method. It is shown that the one-step estimators also achieve the optimal convergence rate. Moreover this property is obtained under conditions milder than that imposed in the two-step estimation method. More importantly, as only one minimization operation is employed, the full asymptotic properties, not only the asymptotic bias and variance, but also the asymptotic distributions of the estimators can be derived. The asymptotic distribution results will play a key role for making statistical inference.
基金supported by the National Natural Science Foundation of China (Grant No. 10471006)
文摘This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However, for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.
基金supported in part by the National Natural Science Foundation of China under Grant No. 10871072Shanxi's Natural Science Foundation of China under Grant No. 2007011014
文摘Semivarying coefficient models are frequently used in statistical models.In this paper,under the condition that the coefficient functions possess different degrees of smoothness,a two-stepmethod is proposed.In the case,one-step method for the smoother coefficient functions cannot beoptimal.This drawback can be repaired by using the two-step estimation procedure.The asymptoticmean-squared error for the two-step procedure is obtained and is shown to achieve the optimal rate ofconvergence.A few simulation studies are conducted to evaluate the proposed estimation methods.