期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Variable bandwidth and one-step local M-estimator 被引量:10
1
作者 范剑青 蒋建成 《Science China Mathematics》 SCIE 2000年第1期65-81,共17页
A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of r... A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of leastsquares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the onestep local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations. 展开更多
关键词 LOCAL regression M-estimator NONPARAMETRIC estimation one-step ROBUSTNESS variable bandwidth.
原文传递
On asymptotics of t-type regression estimation in multiple linear model 被引量:7
2
作者 GUI HengjianDepartment of Mathematics, Beijing Normal University, Beijing 100875, China 《Science China Mathematics》 SCIE 2004年第4期628-639,共12页
We consider a robust estimator (t-type regression estimator) of multiple linear regression model by maximizing marginal likelihood of a scaled t-type error t-distribution.The marginal likelihood can also be applied to... We consider a robust estimator (t-type regression estimator) of multiple linear regression model by maximizing marginal likelihood of a scaled t-type error t-distribution.The marginal likelihood can also be applied to the de-correlated response when the withinsubject correlation can be consistently estimated from an initial estimate of the model based on the independent working assumption. This paper shows that such a t-type estimator is consistent. 展开更多
关键词 T-TYPE regression estimator M-estimator one-step estimate consistency ASYMPTOTIC normality.
原文传递
非等间隔动态面板数据模型:基于半差分的估计方法和应用 被引量:3
3
作者 乔坤元 《统计研究》 CSSCI 北大核心 2014年第1期98-105,共8页
传统的估计方法并不适用于非等间隔动态面板数据模型,本文在总结已有文献的面板、非线性最小二乘和最短距离估计量的基础上,进一步提出了基于半差分方法的估计量以改进估计精度,与此同时着重强调了缺失观测期中遗漏变量的问题。蒙特卡... 传统的估计方法并不适用于非等间隔动态面板数据模型,本文在总结已有文献的面板、非线性最小二乘和最短距离估计量的基础上,进一步提出了基于半差分方法的估计量以改进估计精度,与此同时着重强调了缺失观测期中遗漏变量的问题。蒙特卡洛模拟试验了这些估计量在有限样本中的表现,发现半差分估计量的精度最高,尤其是在考虑遗漏变量的情况下。本文将新得到的半差分估计用于中国劳动收入过程的研究中,实证结果表明,中国居民的劳动收入差距在拉大,并且劳动收入对收入冲击更加敏感。 展开更多
关键词 非等间隔动态面板数据模型 半差分方法 缺失观测期的遗漏变量 劳动收入过程
下载PDF
Two-stage local M-estimation of additive models 被引量:1
4
作者 JIANG JianCheng LI JianTao 《Science China Mathematics》 SCIE 2008年第7期1315-1338,共24页
This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very m... This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However, for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology. 展开更多
关键词 local M-estimation one-step approximation orthogonal series estimator TWO-STAGE 62G35 62G05 62G08
原文传递
异质性大数据的分布式估计 被引量:2
5
作者 郭婧璇 徐慧超 +1 位作者 祝婉晴 田茂再 《统计研究》 CSSCI 北大核心 2020年第10期104-114,共11页
随着物联网技术的进步,大数据给网络带宽和计算机存储能力带来巨大挑战,传统的集中式数据处理难以实现,客观上促进了分布式统计学习的发展。在无迭代算法研究中,Zhang等(2013)证明了当数据集个数s=O(■)时,基于局部经验风险最小化的分治... 随着物联网技术的进步,大数据给网络带宽和计算机存储能力带来巨大挑战,传统的集中式数据处理难以实现,客观上促进了分布式统计学习的发展。在无迭代算法研究中,Zhang等(2013)证明了当数据集个数s=O(■)时,基于局部经验风险最小化的分治(DC)简单平均估计量具有O(N-1)均方误差收敛速度,Huang和Huo(2019)在M估计框架下进一步提出分布式一步估计量,但上述方法均未考虑海量数据可能存在的异质性对分治估计效果的影响。本文在线性模型框架下提出海量异质数据的分治一步加权估计,证明了估计量的渐近性质并考虑了异质性检验问题。将本文提出的方法应用于美国医疗保险实际数据分析,结果表明该方法能更好地拟合数据的线性趋势且显著提高了计算效率。 展开更多
关键词 分治策略 一步估计 海量数据 异质性 医疗保险
下载PDF
Analysis of Salaries and Some Non-traditional Measures of Location
6
作者 Milan Terek Nguyen Dinh He 《Journal of Modern Accounting and Auditing》 2013年第5期711-718,共8页
The paper deals with an analysis of how to use certain measures of location in analysis of salaries. One of the traditional measures of location, the mean should offer typical value of variable, representing all its v... The paper deals with an analysis of how to use certain measures of location in analysis of salaries. One of the traditional measures of location, the mean should offer typical value of variable, representing all its values by the best way. Sometimes, the mean is located in the tail of the distribution and gives a very biased idea about the location of the distribution. In these cases, using different measures of location could be useful. Trimmed mean is described. The trimmed mean refers to a situation where a certain proportion of the largest and smallest observations are removed and the remaining observations are averaged. The construction of some measures of location is based on the analysis of outliers. Outliers are characterized. Then the possibilities of the detection of outliers are analyzed. Computing of one-step M-estimator and modified one-step M-estimator of location is described. A comparison of the trimmed means and M-estimators of location is presented. Finally, the paper focuses on the application of the trimmed mean and M-estimators of location in analysis of salaries. The analysis of salaries of employers of the big Slovak companies in second half of the year 2009 is realized. The data from the census are used in the analysis. The median, 20% trimmed mean and the characteristics, based on the one-step M-estimator of location and modified one step M-estimator, are calculated. 展开更多
关键词 trimmed mean detecting outliers one-step M-estimator modified one-step M-estimator analysis ofsalaries
下载PDF
恒加试验中F{t-μ/σ}型参数的一步估计 被引量:1
7
作者 徐健 戴正德 《云南大学学报(自然科学版)》 CAS CSCD 1998年第S2期243-249,共7页
在寿命分布为F{t-μ/σ} 型场合,对恒定应力加速寿命试验的数据进行了分析.综合了各加速应力水平下分布参数的估计及其相关性,给出正常应力水平下寿命分布参数的一步估计.
关键词 恒加试验 F{t-μ/σ}型分布 相关线性模型 一步线性无偏估计 一步极大似然估计
原文传递
带有色噪声和一步观测滞后的广义控制系统时变估值器
8
作者 窦寅丰 冉陈键 《黑龙江大学自然科学学报》 CAS 2022年第5期588-596,共9页
对于带有色过程噪声和一步随机观测滞后的线性离散随机广义控制系统,提出了基于Klaman滤波理论的时变估值算法。利用奇异值分解方法将原广义控制系统转化为两个降阶正常子系统,利用状态扩维方法和去随机化方法,将一步观测滞后和有色过... 对于带有色过程噪声和一步随机观测滞后的线性离散随机广义控制系统,提出了基于Klaman滤波理论的时变估值算法。利用奇异值分解方法将原广义控制系统转化为两个降阶正常子系统,利用状态扩维方法和去随机化方法,将一步观测滞后和有色过程噪声都压缩到新模型的虚拟过程噪声和虚拟观测噪声中,从而得到增广降阶状态的标准状态空间模型。对于该标准系统,利用经典Kalman滤波理论,得到了该增广降阶状态的时变Kalman估值器(包括Kalman滤波器、预报器和平滑器)。利用增广降阶状态和广义系统原状态之间的关系,提出了广义控制系统的时变估值器及其估值误差方差阵。通过双循环电路系统的仿真实例验证了所提出算法的有效性和正确性。 展开更多
关键词 广义控制系统 有色过程噪声 一步观测滞后 KALMAN估值器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部