A significant geologic event occurred on the Oligocene/Miocene boundary at 23.8 Ma in the northern South China Sea, which is named the Baiyun (白云) movement in this article. This event strongly affected not only th...A significant geologic event occurred on the Oligocene/Miocene boundary at 23.8 Ma in the northern South China Sea, which is named the Baiyun (白云) movement in this article. This event strongly affected not only the South China Sea, but also East Asia. After the Baiyun event, the ridge of seafloor spreading of the South China Sea jumped southward and rotated counterclockwise, and a strong subsidence occurred in the Baiyun sag of the Pearl River Mouth basin. The shelf break shifted suddenly from the south to the north of the Baiyun sag, and the deposition environment in this sag changed from continental shelf with neritic deposition to continental slope with deep-water deposition. Sediment geochemistry study indicated that the Baiyun event played a key role in the rapid change of sediment provenance for the Pearl River Mouth basin. Between 32 and 23.8 Ma, the source of sediments was mainly from the granites in South China, while after 23.8 Ma some sediments might have come from the eastern Himalaya, as the Pearl River drainage extended westward after the uplift of Tibet since that time. The Baiyun event led to a great change in the drainage framework of the paleo- Pearl River, sediment types and the depositional environments in the Pearl River Mouth basin, and relative sea level of the northern South China Sea, as well as sedimentation and hydrocarbon accumulation in the area.展开更多
The Oligocene-Miocene Asmari Formation is a thick sequence of shallow water carbonates of the Zagros Basin. Khaviz Anticline outcrop [near Behbahan city/Iran] was studied in this research in order to interpret the fac...The Oligocene-Miocene Asmari Formation is a thick sequence of shallow water carbonates of the Zagros Basin. Khaviz Anticline outcrop [near Behbahan city/Iran] was studied in this research in order to interpret the facies, depositional environment and sequence stratigraphy of the Asmari Formation succession. In this study, twelve different microfacies types have been recognized, which can be grouped into five (micro) facies associations: peritidal, lagoon, shoal, semi restricted marine and open marine. The Asmari Formation represents sedimentation on a carbonate ramp. According to the fauna data, the Asmari Formation is Oligocene (Rupelian/Chattian) to Early Miocene (Burdigalian) in age at the study area. Eight third-order depositional sequences are identified on the basis of deepening and shallowing patterns in the microfacies. The depositional sequences 0 and 1 (Rupelian-Chattian), 2, 3 and 4 (Chattian) were referred to the lower while sequences 5 and 6 (Aquitanian) were referred to the middle and sequence 7 (Burdigalian) was referred to the upper Asmari Formation. The relative sea-level curve of the Asmari basin and its matching with the global sea-level curves documented that Global eustatic phenomena affected this basin.展开更多
The oldest Asian record of alpheid shrimps,assigned to genus Alpheus,based on snapping claw fingertips from the Miocene Khari Nadi Formation in the Kutch Basin,western India reported herein,extends the fossil record o...The oldest Asian record of alpheid shrimps,assigned to genus Alpheus,based on snapping claw fingertips from the Miocene Khari Nadi Formation in the Kutch Basin,western India reported herein,extends the fossil record of the family Alpheidae from Asia by~22 million years.An early Miocene(Aquitanian)age is estimated based on the associated assemblage of calcareous nannofossils,Sphenolithus disbelemnos,Cyclicargolithus floridanus,and Reticulofenestra haqii.The co-occurring microbiota includes bony fish otolith remains,identified as“genus Gobiidarum”,isolated teeth of Dasyatis rays,Sphyrna sharks,and teleosts,ctenoid and placoid scales,ostracods,belonging to the genera Paractinocythereis,Alocopocythere,Ruggieria,Aglaiocypris,Bairdoppilata,and echinoid spines.Taken together,the microfossil assemblage and data from chemical analyses using Energy Dispersive Spectroscopy,X-Ray Diffraction and Wavelength Dispersive X-Ray Fluorescence of host and associated lithologies suggests prevalence of a shallow(neritic)to coastal marine(intertidal)depositional paleoenvironment.The present investigation also provides the oldest fossil evidence on the co-occurrence of Alpheus and gobiids(based on otoliths)that strongly advocates that the mutualistic association between these animal groups had developed by the Aquitanian.展开更多
The past size and location of the hypothesized proto-South China Sea vanished ocean basin has important plate-tectonic implications for Southeast Asia since the Mesozoic. Here we present new details on proto-South Chi...The past size and location of the hypothesized proto-South China Sea vanished ocean basin has important plate-tectonic implications for Southeast Asia since the Mesozoic. Here we present new details on proto-South China Sea paleogeography using mapped and unfolded slabs from tomography. Mapped slabs included: the Eurasia-South China Sea slab subducting at the Manila trench; the northern Philippine Sea Plate slab subducting at the Ryukyu trench; and, a swath of detached, subhorizontal, slab-like tomographic anomalies directly under the South China Sea at 450 to 700 km depths that we show is subducted ‘northern proto-South China Sea’ lithosphere. Slab unfolding revealed that the South China Sea lay directly above the ‘northern Proto-South China Sea’ with both extending 400 to 500 km to the east of the present Manila trench prior to subduction. Our slab-based plate reconstruction indicated the proto-South China Sea was consumed by double-sided subduction, as follows:(1) The ‘northern proto-South China Sea’ subducted in the Oligo–Miocene under the Dangerous Grounds and southward expanding South China Sea by in-place ‘self subduction’ similar to the western Mediterranean basins;(2) limited southward subduction of the proto-South China Sea under Borneo occurred pre-Oligocene, represented by the 800–900 km deep ‘southern proto-South China Sea’ slab.展开更多
The topography of the Harlik Mountain has a strong impact on the formation of current arid climate in the Turpan-Hami Basin.However,it is still controversial if Harlik Mountain experienced significant exhumation durin...The topography of the Harlik Mountain has a strong impact on the formation of current arid climate in the Turpan-Hami Basin.However,it is still controversial if Harlik Mountain experienced significant exhumation during the Middle to Late Cenozoic according to the previous thermochronology studies.The features of the Oligocene to Miocene sediments in the foreland basin could provide productive information for resolving the debates.The peak ages of detrital apatite fission track analysis of the Oligocene–Miocene sandstone in the Turpan-Hami Basin are well comparable with the cooling age records of the Harlik Mountain rocks,indicating that the Oligocene–Miocene Taoshuyuanzi Formation in the basin was mostly derived from the Harlik Mountain.The stratigraphic sequence exhibits coarsening upward,reflecting that the source area was in a tectonically active period during the deposition process.Heavy mineral assemblages also suggest that the unstable minerals in the sediment increased significantly at the end of the deposition.Moreover,the proportion of apatite increased up-section,while the garnet content decreased significantly,indicating that the Carboniferous metamorphic rocks have been gradually eroded out and more intrusive rocks have been exposed to the surface.These observations suggest that the Harlik Mountain experienced exhumation during the Oligocene to Miocene,and the denudation depth afterward was probably less than 2.5 km according to the previously apatite(U-Th)/He data.The Oligocene–Miocene exhumation probably acted as one of the triggers for the heavy drought of the Turpan-Hami Basin during the Middle–Late Neogene.展开更多
As the link connecting the South China Continent and the northern South China Sea(SCS),the Pearl River is the focus of sedimentology and petroleum geology research.Its evolutionary process and controlling factors are ...As the link connecting the South China Continent and the northern South China Sea(SCS),the Pearl River is the focus of sedimentology and petroleum geology research.Its evolutionary process and controlling factors are of great significance in revealing the East Asian continental landscape reorganization during the Late Cenozoic.Based on published data,’source-to-sink’provenance analyses allow systematic deliberation on the birth and evolutionary history of the Pearl River.Close to the Oligocene/Miocene boundary,an abrupt shift in the sedimentary composition indicates significant westward and northward expansion of the river’s watershed area,followed by the establishment of a near-modern fluvial network.This sedimentary change generally concurred with a series of regional geological events,including the onset of the Yangtze throughflow,large-scale development of the loess plateau,and formation of the northwestern arid zone and Asian Monsoon system.These major changes in the geology-climate-ecoenvironment system are in close response to the process of the Cenozoic Xizang(Tibetan)Plateau uplift.Consequently,the East Asian continental landscape and most of midCenozoic drainage systems underwent critical reversion into east-tilting,or east-flowing networks.展开更多
基金supported by the National Natural Science Foundation of China (No. 40238060)
文摘A significant geologic event occurred on the Oligocene/Miocene boundary at 23.8 Ma in the northern South China Sea, which is named the Baiyun (白云) movement in this article. This event strongly affected not only the South China Sea, but also East Asia. After the Baiyun event, the ridge of seafloor spreading of the South China Sea jumped southward and rotated counterclockwise, and a strong subsidence occurred in the Baiyun sag of the Pearl River Mouth basin. The shelf break shifted suddenly from the south to the north of the Baiyun sag, and the deposition environment in this sag changed from continental shelf with neritic deposition to continental slope with deep-water deposition. Sediment geochemistry study indicated that the Baiyun event played a key role in the rapid change of sediment provenance for the Pearl River Mouth basin. Between 32 and 23.8 Ma, the source of sediments was mainly from the granites in South China, while after 23.8 Ma some sediments might have come from the eastern Himalaya, as the Pearl River drainage extended westward after the uplift of Tibet since that time. The Baiyun event led to a great change in the drainage framework of the paleo- Pearl River, sediment types and the depositional environments in the Pearl River Mouth basin, and relative sea level of the northern South China Sea, as well as sedimentation and hydrocarbon accumulation in the area.
文摘The Oligocene-Miocene Asmari Formation is a thick sequence of shallow water carbonates of the Zagros Basin. Khaviz Anticline outcrop [near Behbahan city/Iran] was studied in this research in order to interpret the facies, depositional environment and sequence stratigraphy of the Asmari Formation succession. In this study, twelve different microfacies types have been recognized, which can be grouped into five (micro) facies associations: peritidal, lagoon, shoal, semi restricted marine and open marine. The Asmari Formation represents sedimentation on a carbonate ramp. According to the fauna data, the Asmari Formation is Oligocene (Rupelian/Chattian) to Early Miocene (Burdigalian) in age at the study area. Eight third-order depositional sequences are identified on the basis of deepening and shallowing patterns in the microfacies. The depositional sequences 0 and 1 (Rupelian-Chattian), 2, 3 and 4 (Chattian) were referred to the lower while sequences 5 and 6 (Aquitanian) were referred to the middle and sequence 7 (Burdigalian) was referred to the upper Asmari Formation. The relative sea-level curve of the Asmari basin and its matching with the global sea-level curves documented that Global eustatic phenomena affected this basin.
基金granted by the BSIP LucknowIndia in the form of an In-house Project No. 3 (2021–2025)
文摘The oldest Asian record of alpheid shrimps,assigned to genus Alpheus,based on snapping claw fingertips from the Miocene Khari Nadi Formation in the Kutch Basin,western India reported herein,extends the fossil record of the family Alpheidae from Asia by~22 million years.An early Miocene(Aquitanian)age is estimated based on the associated assemblage of calcareous nannofossils,Sphenolithus disbelemnos,Cyclicargolithus floridanus,and Reticulofenestra haqii.The co-occurring microbiota includes bony fish otolith remains,identified as“genus Gobiidarum”,isolated teeth of Dasyatis rays,Sphyrna sharks,and teleosts,ctenoid and placoid scales,ostracods,belonging to the genera Paractinocythereis,Alocopocythere,Ruggieria,Aglaiocypris,Bairdoppilata,and echinoid spines.Taken together,the microfossil assemblage and data from chemical analyses using Energy Dispersive Spectroscopy,X-Ray Diffraction and Wavelength Dispersive X-Ray Fluorescence of host and associated lithologies suggests prevalence of a shallow(neritic)to coastal marine(intertidal)depositional paleoenvironment.The present investigation also provides the oldest fossil evidence on the co-occurrence of Alpheus and gobiids(based on otoliths)that strongly advocates that the mutualistic association between these animal groups had developed by the Aquitanian.
文摘The past size and location of the hypothesized proto-South China Sea vanished ocean basin has important plate-tectonic implications for Southeast Asia since the Mesozoic. Here we present new details on proto-South China Sea paleogeography using mapped and unfolded slabs from tomography. Mapped slabs included: the Eurasia-South China Sea slab subducting at the Manila trench; the northern Philippine Sea Plate slab subducting at the Ryukyu trench; and, a swath of detached, subhorizontal, slab-like tomographic anomalies directly under the South China Sea at 450 to 700 km depths that we show is subducted ‘northern proto-South China Sea’ lithosphere. Slab unfolding revealed that the South China Sea lay directly above the ‘northern Proto-South China Sea’ with both extending 400 to 500 km to the east of the present Manila trench prior to subduction. Our slab-based plate reconstruction indicated the proto-South China Sea was consumed by double-sided subduction, as follows:(1) The ‘northern proto-South China Sea’ subducted in the Oligo–Miocene under the Dangerous Grounds and southward expanding South China Sea by in-place ‘self subduction’ similar to the western Mediterranean basins;(2) limited southward subduction of the proto-South China Sea under Borneo occurred pre-Oligocene, represented by the 800–900 km deep ‘southern proto-South China Sea’ slab.
基金funded by the National Natural Science Foundation of China(Nos.41972208,42172251).
文摘The topography of the Harlik Mountain has a strong impact on the formation of current arid climate in the Turpan-Hami Basin.However,it is still controversial if Harlik Mountain experienced significant exhumation during the Middle to Late Cenozoic according to the previous thermochronology studies.The features of the Oligocene to Miocene sediments in the foreland basin could provide productive information for resolving the debates.The peak ages of detrital apatite fission track analysis of the Oligocene–Miocene sandstone in the Turpan-Hami Basin are well comparable with the cooling age records of the Harlik Mountain rocks,indicating that the Oligocene–Miocene Taoshuyuanzi Formation in the basin was mostly derived from the Harlik Mountain.The stratigraphic sequence exhibits coarsening upward,reflecting that the source area was in a tectonically active period during the deposition process.Heavy mineral assemblages also suggest that the unstable minerals in the sediment increased significantly at the end of the deposition.Moreover,the proportion of apatite increased up-section,while the garnet content decreased significantly,indicating that the Carboniferous metamorphic rocks have been gradually eroded out and more intrusive rocks have been exposed to the surface.These observations suggest that the Harlik Mountain experienced exhumation during the Oligocene to Miocene,and the denudation depth afterward was probably less than 2.5 km according to the previously apatite(U-Th)/He data.The Oligocene–Miocene exhumation probably acted as one of the triggers for the heavy drought of the Turpan-Hami Basin during the Middle–Late Neogene.
基金supported by the National Natural Science Foundation of China(grant Nos.42076066,92055203 and 41874076)the National Science and Technology Major Project of China(grant No.2016ZX05026004-002)the National Key Research and Development Program of China(grant No.2018YFE0202400)。
文摘As the link connecting the South China Continent and the northern South China Sea(SCS),the Pearl River is the focus of sedimentology and petroleum geology research.Its evolutionary process and controlling factors are of great significance in revealing the East Asian continental landscape reorganization during the Late Cenozoic.Based on published data,’source-to-sink’provenance analyses allow systematic deliberation on the birth and evolutionary history of the Pearl River.Close to the Oligocene/Miocene boundary,an abrupt shift in the sedimentary composition indicates significant westward and northward expansion of the river’s watershed area,followed by the establishment of a near-modern fluvial network.This sedimentary change generally concurred with a series of regional geological events,including the onset of the Yangtze throughflow,large-scale development of the loess plateau,and formation of the northwestern arid zone and Asian Monsoon system.These major changes in the geology-climate-ecoenvironment system are in close response to the process of the Cenozoic Xizang(Tibetan)Plateau uplift.Consequently,the East Asian continental landscape and most of midCenozoic drainage systems underwent critical reversion into east-tilting,or east-flowing networks.