The maximum ocean depth so far reported is about 11000 m,and is located in the Mariana Trench in the Western Pacific Ocean.The hybrid unmanned underwater vehicle,Haidou,is developed to perform scientific survey at the...The maximum ocean depth so far reported is about 11000 m,and is located in the Mariana Trench in the Western Pacific Ocean.The hybrid unmanned underwater vehicle,Haidou,is developed to perform scientific survey at the deepest parts of the Earth oceans.For vehicles working at the full-ocean depth,acoustic positioning is the most effective and popular method.The 11000 m class acoustic positioning system is relatively massive and complex,and it requires specialized research vessels equipped with compatible acoustic instruments.As a compact testbed platform,it is impractical for Haidou to carry an LBL/USBL beacon with its large volume and weight.During the descent to about 11000 m,horizontal drift could not be eliminated because of the hydrodynamics and uncertain ocean currents in the sea trials.The maximum depth recorded by Haidou is 10905 m,and determining the precise location of the deepest point is challenging.With the bathymetric map produced by a multibeam sonar,the terrain contour matching(TERCOM)method is adopted for terrain matching localization.TERCOM is stable in providing an accurate position because of its insensitivity to the initial position errors.The final matching results show the best estimate of location in the reference terrain map.展开更多
Analysis of Argo float trajectories at 1 000 m and temperature at 950 m in the North Atlantic between November 2003 and January 2005 demonstrates the existence of two different circulation modes with fast transition b...Analysis of Argo float trajectories at 1 000 m and temperature at 950 m in the North Atlantic between November 2003 and January 2005 demonstrates the existence of two different circulation modes with fast transition between them. Each mode has a pair of cyclonic - anticyclonic gyres. The difference is the location of the cyclonic gyre. The cyclonic gyre stretches from southeast to northwest in the first mode and from the southwest to the northeast in the second mode. The observed modes strongly affect the heat and salt transport in the North Atlantic. In particular, the second mode slows down the westward transport of the warm and saline water from the Mediterranean Sea.展开更多
Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the centr...Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the central Pacific(CP)El Niño and the eastern Pacific(EP)El Niño on the Southern Ocean(SO)mixed layer depth(MLD)during austral winter.The MLD response to the EP El Niño shows a dipole pattern in the South Pacific,namely the MLD dipole,which is the leading El Niño-induced MLD variability in the SO.The tropical Pacific warm sea surface temperature anomaly(SSTA)signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low(ASL).This results in an anomalous cyclone over the Amundsen Sea.As a result,the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand,leading to surface cooling through less total surface heat flux,especially surface sensible heat(SH)flux and latent heat(LH)flux,and thus contributing to the mix layer(ML)deepening.The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile,but the total heat flux anomaly shows no significant change.The warm air promotes the sea ice melting and maintains fresh water,which strengthens stratification.This results in a shallower MLD.During the CP El Niño,the response of MLD shows a separate negative MLD anomaly center in the central South Pacific.The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea,which weakens the ASL.Therefore,the anomalous anticyclone dominates the Amundsen Sea.Consequently,the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific,causing surface warming through increased SH,LH,and longwave radiation flux,and thus contributing to the ML shoaling.However,to the east of the anomalous anticyclone,there is no statistically significant impact on the 展开更多
As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the...As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the mixed layer depth(MLD).We investigated the impact of SST,OHC,and MLD on fluctuations of YFT catch in the western/eastern Indian Ocean using the long time series of 63-year environmental and YFT datasets.We found that the impact of SST on YFT was heavily overestimated in the past,and MLD plays a more critical role in the YFT catch fluctuation.When the MLD deepens(>34.8 m),SST was more influential in predicting the catches of YFT than OHC in the western Indian Ocean,and OHC was more critical to YFT than SST in the eastern Indian Ocean.However,when the MLD shallows(<34.8 m),MLD was more vital to predict the catch per unit effort(CPUE)of YFT than SST/OHC in the western.After 2000,there was an asynchronous pattern of YFT CPUE induced by higher frequency variations and ocean hiatus of SST/OHC signals in the western and eastern Indian Oceans basins.The impact of the subsurface hiatus may induce the decrease of YFT in the eastern Indian Ocean.The above findings clarified a non-stationary relationship between the environmental factors and catches of YFT and provided new insights into variations in YFT abundance.展开更多
Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq...Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.展开更多
The active sensor often uses the convergence zone mode to detect a distant target in the deep ocean.However,convergence zones are regions with limited widths that only appear at some discrete distances.Thus,widening t...The active sensor often uses the convergence zone mode to detect a distant target in the deep ocean.However,convergence zones are regions with limited widths that only appear at some discrete distances.Thus,widening the width by adjusting the transmitting array depth facilitates target observation and detection.Traversal search is an effective method for determining the optimal depth,but the heavy computation burden resulting from the calculation of the transmission losses at all source depths impedes its application.To solve the problem,a fast method based on ray cluster theory is proposed.Due to the coherent sound field structure in the deep ocean,several ray clusters with different departure angles radiate from the source,where ray clusters with small departure angles reverse in the water and form a convergence zone.When the source is set to a depth that only the first ray cluster inverts in water,the maximum width of the convergence zone is obtained.Based on this,an optimal transmitting array depth selection method utilizing the reversion condition of the first ray cluster is formulated.Simulation results show that the active sensor can achieve a large convergence zone width with real-time performance using the proposed method.展开更多
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budge...The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radioactive energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.展开更多
Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our result...Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole (IOD) events are significantly different. A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process, which does not take place at the subsurface layer. In the western pole, the surface anomalies last longer than the subsurface anomalies. The subsurface anomalies are strongly correlated with ENSO, while the relationship between the surface anomalies and ENSO is much weaker. And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer. The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields, while the heat flux effect is important on SST.展开更多
The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).Howe...The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).However,one of the long-standing problems of these classical models is the discrepancies between predicted and observed heat flow and floor depth for very young and very old lithosphere.There have been several recent attempts to overcome this problem:one model incorporates temperature-and pressure-dependent parameters and the second model includes an additional low-conductivity crustal layer or magma rich mantle layer(MRM).Alternatively,in the current paper,the ordinary density of lithosphere in the plate conductive models is substituted with a reduction of lithosphere density towards axis that features the irregularity and nonlinearity of plates across the mid-ocean ridges.A new model is formulated incorporating the new form of density for predicting both peak heat flow and floor depth.Simple solutions of power-law forms derived from the model can significantly improve the predicting results of heat flow and floor depth over the mid-ocean ridges.Several datasets in the literature were reutilized for model validation and comparison.These datasets include both earlier datasets used for original model calibration and the more recently compiled high-quality datasets with both sedimentary and crustal loading corrections.The results indicate that both the heat flow and the slope(first orderderivative)of sea floor approach infinity(undifferentiability or singularities)around the mid-ocean ridges.These singularities are partially due to the boundary condition as it has been already known in the literature and partially to the reduction of density of lithosphere as discovered for the first time in the current research.展开更多
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role...The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.展开更多
Satellite remote sensing data can produce global environmental data and is easily accessible and widely used by the scientific and non-scientific community. However, to use satellite data, it is important to know its ...Satellite remote sensing data can produce global environmental data and is easily accessible and widely used by the scientific and non-scientific community. However, to use satellite data, it is important to know its limitations and how it validates against in situ measurements for the different regions. Here, field measurements of chlorophyll-a concentration and euphotic depth within the Great Australian Bight, Gulf St Vincent and Spencer Gulf were used to validate ocean colour products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite. The field data include in situ and in vivo chlorophyll-a concentration, which were compared against MODIS chlorophyll-a products derived from three algorithms (OC3M, Carder, and Garver-Siegel-Maritorena (GSM)), as well as euphotic depth measurements derived from photosynthetically active radiation (PAR) profiles, which were compared against two MODIS euphotic depth products (derived semi-analytically and from surface chlorophyll-a). The OC3M product performed well in open waters, with errors below the 35% NASA accepted limit, but it overestimated chlorophyll-a values in shallow (<50 m) waters. The GSM product produced the lowest errors, but also showed a smaller dynamic range, while the Carder product produced higher errors than GSM and it also showed small dynamic range. The relationships between the MODIS and in situ euphotic depth were robust, with errors lower than 20%. MODIS products showed weaker or no significant relationships to in situ measurements in the Eastern Great Australian Bight. This is thought to be due to the summertime subsurface upwelling pool that is characteristic of the area. Based on these results, the OC3M product provides the most reliable estimates of chlorophyll-a, and is recommended for further applications of MODIS imagery, if the limitations in shallow waters are taken into account. Alternatively, the GSM product could be a better option if the algorithm were locally adjusted. Changes in the sampling 展开更多
提出了一种模拟波浪作用下海床土体动态孔隙水压累积响应的有限元模型,与Clukey et a1.(1983)的波浪水槽实验结果进行了验证分析。通过算例,研究了海床土层厚度对孔隙水压累积速率和残余孔压幅值,以及累积液化深度的影响。结果表...提出了一种模拟波浪作用下海床土体动态孔隙水压累积响应的有限元模型,与Clukey et a1.(1983)的波浪水槽实验结果进行了验证分析。通过算例,研究了海床土层厚度对孔隙水压累积速率和残余孔压幅值,以及累积液化深度的影响。结果表明,累积液化深度随海床厚度的增大而逐步增加;当土体厚度接近一个波长时,液化深度趋于无限厚度海床液化深度的理论值。展开更多
In this study,we designed an oil-filled motor that can be used at full-ocean depths,and investigated the friction losses caused by the rotating seal and the properties of the oil.The direct current(DC)motor is encapsu...In this study,we designed an oil-filled motor that can be used at full-ocean depths,and investigated the friction losses caused by the rotating seal and the properties of the oil.The direct current(DC)motor is encapsulated in an aluminum alloy housing.A rubber diaphragm is used to balance the internal and external pressures so that the motor can work on the seabed without pressure difference.To study the resistance caused by the rotating seal,a numerical model of the Glyd ring and the rotating shaft was established.Results from a rotational torque test agreed with those from numerical analysis.The kinematic viscosity of four oils was measured at 1-25℃.Oil bath experiments in an incubator showed that the resistance from oil is highly correlated with its dynamic viscosity.Dimethicone appears to be very suitable as an insulating oil for these motors.The working characteristics of the motor were tested in a high-pressure chamber.The results showed that the motor needs to overcome higher oil resistance under higher pressure.A prototype of a pressure-adaptive motor was designed and applied successfully in the hadal zone at a water depth of more than 10000 m.展开更多
In the northern Bay of Bengal,the existence of intense temperature inversion during winter is a widely accepted phenomenon.However,occurrences of temperature inversion during other seasons and the spatial distribution...In the northern Bay of Bengal,the existence of intense temperature inversion during winter is a widely accepted phenomenon.However,occurrences of temperature inversion during other seasons and the spatial distribution within and adjacent to the Bay of Bengal are not well understood.In this study,a higher resolution spatiotemporal variation of temperature inversion and its mechanisms are examined with mixed layer heat and salt budget analysis utilizing long-term Argo(2004 to 2020)and RAMA(2007 to 2020)profiles data in the Bay of Bengal and eastern equatorial Indian Ocean(EEIO).Temperature inversion exists(17.5%of the total 39293 Argo and 51.6%of the 28894 RAMA profiles)throughout the year in the entire study area.It shows strong seasonal variation,with the highest occurrences in winter and the lowest in spring.Besides winter inversion in the northern Bay of Bengal,two other regions with frequent temperature inversion are identified in this study for the first time:the northeastern part of the Bay of Bengal and the eastern part of the EEIO during summer and autumn.Driving processes of temperature inversion for different subregions are revealed in the current study.Penetration of heat(mean~25 W/m;)below the haline-stratified shallow mixed layer leads to a relatively warmer subsurface layer along with the simultaneous cooling tendency in mixed layer,which controls more occurrence of temperature inversion in the northern Bay of Bengal throughout the year.Comparatively lower cooling tendency due to net surface heat loss and higher mixed layer salinity leaves the southern part of the bay less supportive to the formation of temperature inversion than the northern bay.In the EEIO,slightly cooling tendency in the mixed layer along with the subduction of warm-salty Arabian Sea water beneath the cold-fresher Bay of Bengal water,and downwelling of thermocline creates a favorable environment for forming temperature inversion mainly during summer and autumn.Deeper isothermal layer depth,and thicker barrier layer thickness inten展开更多
基金Project supported by the National Key R&D Program of China(Nos.2018YFC0308804 and 2016YFC0300800)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB06050200)。
文摘The maximum ocean depth so far reported is about 11000 m,and is located in the Mariana Trench in the Western Pacific Ocean.The hybrid unmanned underwater vehicle,Haidou,is developed to perform scientific survey at the deepest parts of the Earth oceans.For vehicles working at the full-ocean depth,acoustic positioning is the most effective and popular method.The 11000 m class acoustic positioning system is relatively massive and complex,and it requires specialized research vessels equipped with compatible acoustic instruments.As a compact testbed platform,it is impractical for Haidou to carry an LBL/USBL beacon with its large volume and weight.During the descent to about 11000 m,horizontal drift could not be eliminated because of the hydrodynamics and uncertain ocean currents in the sea trials.The maximum depth recorded by Haidou is 10905 m,and determining the precise location of the deepest point is challenging.With the bathymetric map produced by a multibeam sonar,the terrain contour matching(TERCOM)method is adopted for terrain matching localization.TERCOM is stable in providing an accurate position because of its insensitivity to the initial position errors.The final matching results show the best estimate of location in the reference terrain map.
基金The Naval Postgraduate School and the National Natural Science Foundation of China
文摘Analysis of Argo float trajectories at 1 000 m and temperature at 950 m in the North Atlantic between November 2003 and January 2005 demonstrates the existence of two different circulation modes with fast transition between them. Each mode has a pair of cyclonic - anticyclonic gyres. The difference is the location of the cyclonic gyre. The cyclonic gyre stretches from southeast to northwest in the first mode and from the southwest to the northeast in the second mode. The observed modes strongly affect the heat and salt transport in the North Atlantic. In particular, the second mode slows down the westward transport of the warm and saline water from the Mediterranean Sea.
基金The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2021ZD204the Sino-German Mobility Program under contract No.M0333the grant of Shanghai Frontiers Science Center of Polar Science(SCOPS).
文摘Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the central Pacific(CP)El Niño and the eastern Pacific(EP)El Niño on the Southern Ocean(SO)mixed layer depth(MLD)during austral winter.The MLD response to the EP El Niño shows a dipole pattern in the South Pacific,namely the MLD dipole,which is the leading El Niño-induced MLD variability in the SO.The tropical Pacific warm sea surface temperature anomaly(SSTA)signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low(ASL).This results in an anomalous cyclone over the Amundsen Sea.As a result,the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand,leading to surface cooling through less total surface heat flux,especially surface sensible heat(SH)flux and latent heat(LH)flux,and thus contributing to the mix layer(ML)deepening.The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile,but the total heat flux anomaly shows no significant change.The warm air promotes the sea ice melting and maintains fresh water,which strengthens stratification.This results in a shallower MLD.During the CP El Niño,the response of MLD shows a separate negative MLD anomaly center in the central South Pacific.The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea,which weakens the ASL.Therefore,the anomalous anticyclone dominates the Amundsen Sea.Consequently,the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific,causing surface warming through increased SH,LH,and longwave radiation flux,and thus contributing to the ML shoaling.However,to the east of the anomalous anticyclone,there is no statistically significant impact on the
基金Supported by the National Natural Science Foundation of China(Nos.42090044,42376175,U2006211)the Marine S&T Fund of Laoshan Laboratory(Qingdao)(No.LSKJ202204302)。
文摘As an economically critical pelagic migratory species,yellowfin tuna(Thunnus albacores,YFT)is very sensible to physical and environmental conditions,such as sea surface temperature(SST),ocean heat content(OHC),and the mixed layer depth(MLD).We investigated the impact of SST,OHC,and MLD on fluctuations of YFT catch in the western/eastern Indian Ocean using the long time series of 63-year environmental and YFT datasets.We found that the impact of SST on YFT was heavily overestimated in the past,and MLD plays a more critical role in the YFT catch fluctuation.When the MLD deepens(>34.8 m),SST was more influential in predicting the catches of YFT than OHC in the western Indian Ocean,and OHC was more critical to YFT than SST in the eastern Indian Ocean.However,when the MLD shallows(<34.8 m),MLD was more vital to predict the catch per unit effort(CPUE)of YFT than SST/OHC in the western.After 2000,there was an asynchronous pattern of YFT CPUE induced by higher frequency variations and ocean hiatus of SST/OHC signals in the western and eastern Indian Oceans basins.The impact of the subsurface hiatus may induce the decrease of YFT in the eastern Indian Ocean.The above findings clarified a non-stationary relationship between the environmental factors and catches of YFT and provided new insights into variations in YFT abundance.
基金The National Natural Science Foundation of China under contract No. 42076078China–Mozambique Joint Cruise under contract No. GASI-01-DLJHJ-CM。
文摘Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.
基金supported by the National Key R&D Program of China(No.2021YFF0501200)the National Natural Science Foundation of China(No.11774374)。
文摘The active sensor often uses the convergence zone mode to detect a distant target in the deep ocean.However,convergence zones are regions with limited widths that only appear at some discrete distances.Thus,widening the width by adjusting the transmitting array depth facilitates target observation and detection.Traversal search is an effective method for determining the optimal depth,but the heavy computation burden resulting from the calculation of the transmission losses at all source depths impedes its application.To solve the problem,a fast method based on ray cluster theory is proposed.Due to the coherent sound field structure in the deep ocean,several ray clusters with different departure angles radiate from the source,where ray clusters with small departure angles reverse in the water and form a convergence zone.When the source is set to a depth that only the first ray cluster inverts in water,the maximum width of the convergence zone is obtained.Based on this,an optimal transmitting array depth selection method utilizing the reversion condition of the first ray cluster is formulated.Simulation results show that the active sensor can achieve a large convergence zone width with real-time performance using the proposed method.
基金Supported by the Nantong University Research Funding (No. 09R02)
文摘The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radioactive energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.
基金supported by the National Natural Science Foundation of China(Grant Nos.40876001 and40890152)the Program for New Century Excellent Talents in University(Grant No.NCET-08-0510)the State Key Development Program for National Basic Research Program of China under contract(Grant No.2007CB-411803)
文摘Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole (IOD) events are significantly different. A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process, which does not take place at the subsurface layer. In the western pole, the surface anomalies last longer than the subsurface anomalies. The subsurface anomalies are strongly correlated with ENSO, while the relationship between the surface anomalies and ENSO is much weaker. And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer. The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields, while the heat flux effect is important on SST.
基金supported by National Natural Science Foundation of China(grant number 42050103)Guangdong Research Team Development Grant(grant number 2021ZT09H399)。
文摘The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).However,one of the long-standing problems of these classical models is the discrepancies between predicted and observed heat flow and floor depth for very young and very old lithosphere.There have been several recent attempts to overcome this problem:one model incorporates temperature-and pressure-dependent parameters and the second model includes an additional low-conductivity crustal layer or magma rich mantle layer(MRM).Alternatively,in the current paper,the ordinary density of lithosphere in the plate conductive models is substituted with a reduction of lithosphere density towards axis that features the irregularity and nonlinearity of plates across the mid-ocean ridges.A new model is formulated incorporating the new form of density for predicting both peak heat flow and floor depth.Simple solutions of power-law forms derived from the model can significantly improve the predicting results of heat flow and floor depth over the mid-ocean ridges.Several datasets in the literature were reutilized for model validation and comparison.These datasets include both earlier datasets used for original model calibration and the more recently compiled high-quality datasets with both sedimentary and crustal loading corrections.The results indicate that both the heat flow and the slope(first orderderivative)of sea floor approach infinity(undifferentiability or singularities)around the mid-ocean ridges.These singularities are partially due to the boundary condition as it has been already known in the literature and partially to the reduction of density of lithosphere as discovered for the first time in the current research.
基金supported by the National Key Basic Research and Development Program(2010CB950404)the National High Technology Research and Development Program(2013AA09A506)
文摘The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.
文摘Satellite remote sensing data can produce global environmental data and is easily accessible and widely used by the scientific and non-scientific community. However, to use satellite data, it is important to know its limitations and how it validates against in situ measurements for the different regions. Here, field measurements of chlorophyll-a concentration and euphotic depth within the Great Australian Bight, Gulf St Vincent and Spencer Gulf were used to validate ocean colour products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite. The field data include in situ and in vivo chlorophyll-a concentration, which were compared against MODIS chlorophyll-a products derived from three algorithms (OC3M, Carder, and Garver-Siegel-Maritorena (GSM)), as well as euphotic depth measurements derived from photosynthetically active radiation (PAR) profiles, which were compared against two MODIS euphotic depth products (derived semi-analytically and from surface chlorophyll-a). The OC3M product performed well in open waters, with errors below the 35% NASA accepted limit, but it overestimated chlorophyll-a values in shallow (<50 m) waters. The GSM product produced the lowest errors, but also showed a smaller dynamic range, while the Carder product produced higher errors than GSM and it also showed small dynamic range. The relationships between the MODIS and in situ euphotic depth were robust, with errors lower than 20%. MODIS products showed weaker or no significant relationships to in situ measurements in the Eastern Great Australian Bight. This is thought to be due to the summertime subsurface upwelling pool that is characteristic of the area. Based on these results, the OC3M product provides the most reliable estimates of chlorophyll-a, and is recommended for further applications of MODIS imagery, if the limitations in shallow waters are taken into account. Alternatively, the GSM product could be a better option if the algorithm were locally adjusted. Changes in the sampling
文摘提出了一种模拟波浪作用下海床土体动态孔隙水压累积响应的有限元模型,与Clukey et a1.(1983)的波浪水槽实验结果进行了验证分析。通过算例,研究了海床土层厚度对孔隙水压累积速率和残余孔压幅值,以及累积液化深度的影响。结果表明,累积液化深度随海床厚度的增大而逐步增加;当土体厚度接近一个波长时,液化深度趋于无限厚度海床液化深度的理论值。
基金supported by the National Key R&D Program of China(No.2018YFC0310601)the Strategic Priority Research Program of the Chinese Academy of Science(No.XDA22000000)+1 种基金the National Key Research and Development Program of China(Nos.2016YFC0300800 and 2017YFC006500)the Key Program of Sanya Yazhouwan,China。
文摘In this study,we designed an oil-filled motor that can be used at full-ocean depths,and investigated the friction losses caused by the rotating seal and the properties of the oil.The direct current(DC)motor is encapsulated in an aluminum alloy housing.A rubber diaphragm is used to balance the internal and external pressures so that the motor can work on the seabed without pressure difference.To study the resistance caused by the rotating seal,a numerical model of the Glyd ring and the rotating shaft was established.Results from a rotational torque test agreed with those from numerical analysis.The kinematic viscosity of four oils was measured at 1-25℃.Oil bath experiments in an incubator showed that the resistance from oil is highly correlated with its dynamic viscosity.Dimethicone appears to be very suitable as an insulating oil for these motors.The working characteristics of the motor were tested in a high-pressure chamber.The results showed that the motor needs to overcome higher oil resistance under higher pressure.A prototype of a pressure-adaptive motor was designed and applied successfully in the hadal zone at a water depth of more than 10000 m.
基金The Marine Scholarship of ChinaChina Scholarship Council(CSC)for International Doctoral Students under contract No.2017SOA016552the National Natural Science Foundation of China under contract Nos U2106204 and 41676003。
文摘In the northern Bay of Bengal,the existence of intense temperature inversion during winter is a widely accepted phenomenon.However,occurrences of temperature inversion during other seasons and the spatial distribution within and adjacent to the Bay of Bengal are not well understood.In this study,a higher resolution spatiotemporal variation of temperature inversion and its mechanisms are examined with mixed layer heat and salt budget analysis utilizing long-term Argo(2004 to 2020)and RAMA(2007 to 2020)profiles data in the Bay of Bengal and eastern equatorial Indian Ocean(EEIO).Temperature inversion exists(17.5%of the total 39293 Argo and 51.6%of the 28894 RAMA profiles)throughout the year in the entire study area.It shows strong seasonal variation,with the highest occurrences in winter and the lowest in spring.Besides winter inversion in the northern Bay of Bengal,two other regions with frequent temperature inversion are identified in this study for the first time:the northeastern part of the Bay of Bengal and the eastern part of the EEIO during summer and autumn.Driving processes of temperature inversion for different subregions are revealed in the current study.Penetration of heat(mean~25 W/m;)below the haline-stratified shallow mixed layer leads to a relatively warmer subsurface layer along with the simultaneous cooling tendency in mixed layer,which controls more occurrence of temperature inversion in the northern Bay of Bengal throughout the year.Comparatively lower cooling tendency due to net surface heat loss and higher mixed layer salinity leaves the southern part of the bay less supportive to the formation of temperature inversion than the northern bay.In the EEIO,slightly cooling tendency in the mixed layer along with the subduction of warm-salty Arabian Sea water beneath the cold-fresher Bay of Bengal water,and downwelling of thermocline creates a favorable environment for forming temperature inversion mainly during summer and autumn.Deeper isothermal layer depth,and thicker barrier layer thickness inten