根据IGRA2无线电探空数据和气象、电离层和气候卫星联合观测系统(Constellation Observing System for Meteorology Ionosphere and Climate,COSMIC)掩星资料,对2015—2017年包含折射率、温度和比湿廓线在内的FY-3C掩星中性大气产品进...根据IGRA2无线电探空数据和气象、电离层和气候卫星联合观测系统(Constellation Observing System for Meteorology Ionosphere and Climate,COSMIC)掩星资料,对2015—2017年包含折射率、温度和比湿廓线在内的FY-3C掩星中性大气产品进行质量分析。结果表明:FY-3C掩星折射率廓线25 km以下整体无系统偏差,相对偏差标准差≤5%;温度廓线存在系统负偏差,标准差≥1.5 K;比湿廓线越趋地表质量越低,5 km下标准差≤1.2 g/kg。总体而言,FY-3C掩星数据质量较好,在2015—2017年间逐年提高,但在近地面和25km以上有待进一步提高。对2017年产品的进一步分析表明:就季节而言,折射率廓线和温度廓线质量均在冬季最差,比湿廓线质量在夏季最差;就纬度带而言,折射率廓线在低纬度带质量最差,温度廓线质量的分纬度带比较结果在不同高度范围存在差异,比湿廓线在低纬度带质量明显低于中高纬度带;此外,FY-3C掩星大气产品数据质量随昼夜和海陆变化也存在一定差异。展开更多
A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm...A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method.展开更多
In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, th...In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, the RO refractivity profiles obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission are statistically compared with the observations of 38 radiosonde stations provided by the Australian Bureau of Meteorology during the period from 15 July 2006 through 15 July 2007. Different collocation criteria are compared at first, and COSMIC RO soundings that occur within 3 hours and 300 km of radiosonde measurements are used for the final statistical comparison. The overall results show that the agreements between the COSMIC refractivity profiles and the radiosonde soundings from the 38 stations are very good at 0-30 km altitude, with mean absolute relative refractivity deviations of less than 0.5%. Latitudinal comparisons indicate that there are negative refractivity deviations in the lower troposphere over the low latitude and middle latitude regions and large standard deviations exist in the lower troposphere of low latitude regions, which can reach up to ~6%. The comparisons of COSMIC RO refractivity profiles and radiosonde observations for 3 polar stations in four different seasons indicate that the accuracy of GPS RO profiles is better in the Austral summer and autumn than in the Austral spring and winter during the year from September 2006 to August 2007.展开更多
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,...Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.展开更多
The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transpo...The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transport. This study investigates the structural variability of the Martian ionosphere with the aid of the radio occultation (RO) experiments made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. On the dayside, the RO electron density profiles are described by the superposition of two Chapman models, representing the contributions from both the primary layer and the low-altitude secondary layer. The inferred subsolar peak electron densities and altitudes are 1.24×10^5 cm^-3 and 127 km for the former, and 4.28×10^4 cm^-3 and 97 km for the latter, respectively, in general agreement with previous results appropriate for the low solar activity conditions. Our results strengthen the role of solar EUV and X-ray ionization as the driving source of plasma on the dayside of Mars. Beyond the terminator, a systematic decline in ionospheric total electron content is revealed by the MAVEN RO measurements made from the terminator crossing up to a solar zenith angle of 120°. Such a trend is indicative of day-to-night plasma transport as an important source for the nightside Martian ionosphere.展开更多
文摘根据IGRA2无线电探空数据和气象、电离层和气候卫星联合观测系统(Constellation Observing System for Meteorology Ionosphere and Climate,COSMIC)掩星资料,对2015—2017年包含折射率、温度和比湿廓线在内的FY-3C掩星中性大气产品进行质量分析。结果表明:FY-3C掩星折射率廓线25 km以下整体无系统偏差,相对偏差标准差≤5%;温度廓线存在系统负偏差,标准差≥1.5 K;比湿廓线越趋地表质量越低,5 km下标准差≤1.2 g/kg。总体而言,FY-3C掩星数据质量较好,在2015—2017年间逐年提高,但在近地面和25km以上有待进一步提高。对2017年产品的进一步分析表明:就季节而言,折射率廓线和温度廓线质量均在冬季最差,比湿廓线质量在夏季最差;就纬度带而言,折射率廓线在低纬度带质量最差,温度廓线质量的分纬度带比较结果在不同高度范围存在差异,比湿廓线在低纬度带质量明显低于中高纬度带;此外,FY-3C掩星大气产品数据质量随昼夜和海陆变化也存在一定差异。
基金The authors wish to thank the anonymous reviewers who gave us useful suggestions,and we also thank CHAMP—ISDC for providing the occultation data This work was supported by the National Science Foundation of China under No.40333034 an d the Chinese Academy of Science under No.KZCX3-S、v_217.
文摘A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method.
基金supported by the National Natural Science Foundation of China(Grant Nos.40904002 and 40804004)the China-Australia Special Fund of International Collaborative Scientific Research Project(Grant No.40911120024)+1 种基金the National Basic Research Program of China(973 Project,Grant No.2006CB701301)the National High Technology Research and Development Program of China(863 Project,Grant No.2007AA12Z339)
文摘In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, the RO refractivity profiles obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission are statistically compared with the observations of 38 radiosonde stations provided by the Australian Bureau of Meteorology during the period from 15 July 2006 through 15 July 2007. Different collocation criteria are compared at first, and COSMIC RO soundings that occur within 3 hours and 300 km of radiosonde measurements are used for the final statistical comparison. The overall results show that the agreements between the COSMIC refractivity profiles and the radiosonde soundings from the 38 stations are very good at 0-30 km altitude, with mean absolute relative refractivity deviations of less than 0.5%. Latitudinal comparisons indicate that there are negative refractivity deviations in the lower troposphere over the low latitude and middle latitude regions and large standard deviations exist in the lower troposphere of low latitude regions, which can reach up to ~6%. The comparisons of COSMIC RO refractivity profiles and radiosonde observations for 3 polar stations in four different seasons indicate that the accuracy of GPS RO profiles is better in the Austral summer and autumn than in the Austral spring and winter during the year from September 2006 to August 2007.
基金supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(grant No.YSBR-018)the National Natural Science Foundation of China(grant Nos.42188101,42130204)+4 种基金the B-type Strategic Priority Program of CAS(grant no.XDB41000000)the National Natural Science Foundation of China(NSFC)Distinguished Overseas Young Talents Program,Innovation Program for Quantum Science and Technology(2021ZD0300301)the Open Research Project of Large Research Infrastructures of CAS-“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”.The project was supported also by the National Key Laboratory of Deep Space Exploration(Grant No.NKLDSE2023A002)the Open Fund of Anhui Provincial Key Laboratory of Intelligent Underground Detection(Grant No.APKLIUD23KF01)the China National Space Administration(CNSA)pre-research Project on Civil Aerospace Technologies No.D010305,D010301.
文摘Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular.
基金support from the National Natural Science Foundation of China (NSFC) through grant numbers 41525015 and 41774186
文摘The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transport. This study investigates the structural variability of the Martian ionosphere with the aid of the radio occultation (RO) experiments made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. On the dayside, the RO electron density profiles are described by the superposition of two Chapman models, representing the contributions from both the primary layer and the low-altitude secondary layer. The inferred subsolar peak electron densities and altitudes are 1.24×10^5 cm^-3 and 127 km for the former, and 4.28×10^4 cm^-3 and 97 km for the latter, respectively, in general agreement with previous results appropriate for the low solar activity conditions. Our results strengthen the role of solar EUV and X-ray ionization as the driving source of plasma on the dayside of Mars. Beyond the terminator, a systematic decline in ionospheric total electron content is revealed by the MAVEN RO measurements made from the terminator crossing up to a solar zenith angle of 120°. Such a trend is indicative of day-to-night plasma transport as an important source for the nightside Martian ionosphere.