Using the theories of population carrying capacity and ecological elasticity in other fields for reference, the connotation of regional human settlement system was defined from the viewpoint of the complex relationshi...Using the theories of population carrying capacity and ecological elasticity in other fields for reference, the connotation of regional human settlement system was defined from the viewpoint of the complex relationship among the factors such as regional population, resources, environment and economic and social development in the context of China′s rapid urbanization. Then the concept and characterization methods of the regional human settlement carrying capacity were proposed by means of population scale. Furthermore, a model of carrying capacity-pressure-state-response(CPSR) on regional human settlement system was established by referencing pressure-state-response(PSR) model, and the Catastrophe Theory was introduced to determine the corresponding standards of multi-criteria programming and evaluation. Taking Dalian City, Liaoning Province, China as an example, an empirical analysis on evaluation of human settlement system from 2000 to 2012 was carried out. The results showed that the carrying capacity of human settlement system in Dalian was fluctuating between 9.6 × 106 to 10 × 106 persons with a quantitative stage of the dynamic regulation. During the research period the load index of human settlement system in Dalian dropped from 0.96 to 0.84 with a lower pressure of human settlement system than the national average level. And the emergency response grades of human settlement system in Dalian were kept in grade Ⅱ(orange warning) or grade Ⅲ(yellow warning). Human settlement system of Dalian was in slight security state as a whole, but the load had a tendency of increase in recent years. The related departments should pay close attention to regional human settlement system and take active measures to improve human settlement by both intensity control and total quantity control. By comparison, analysis and discussion, it was considered that the results were basically accordded with the current situations of human settlement in Dalian, and the evaluation results were more reliable, visualized and easily展开更多
We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy mo...We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.展开更多
基金Under the auspices of Project of Humanities and Social Sciences,Ministry of Education of China(No.14YJAZH112)Social Sciences Planning Project of Liaoning Province(No.L13BJL019)+1 种基金Economic and Social Development Project of Liaoning Province(No.2014lslktzixxjx-06)Specialized Research Fund for Doctoral Program of Higher Education,Ministry of Education of China(No.20122136110003)
文摘Using the theories of population carrying capacity and ecological elasticity in other fields for reference, the connotation of regional human settlement system was defined from the viewpoint of the complex relationship among the factors such as regional population, resources, environment and economic and social development in the context of China′s rapid urbanization. Then the concept and characterization methods of the regional human settlement carrying capacity were proposed by means of population scale. Furthermore, a model of carrying capacity-pressure-state-response(CPSR) on regional human settlement system was established by referencing pressure-state-response(PSR) model, and the Catastrophe Theory was introduced to determine the corresponding standards of multi-criteria programming and evaluation. Taking Dalian City, Liaoning Province, China as an example, an empirical analysis on evaluation of human settlement system from 2000 to 2012 was carried out. The results showed that the carrying capacity of human settlement system in Dalian was fluctuating between 9.6 × 106 to 10 × 106 persons with a quantitative stage of the dynamic regulation. During the research period the load index of human settlement system in Dalian dropped from 0.96 to 0.84 with a lower pressure of human settlement system than the national average level. And the emergency response grades of human settlement system in Dalian were kept in grade Ⅱ(orange warning) or grade Ⅲ(yellow warning). Human settlement system of Dalian was in slight security state as a whole, but the load had a tendency of increase in recent years. The related departments should pay close attention to regional human settlement system and take active measures to improve human settlement by both intensity control and total quantity control. By comparison, analysis and discussion, it was considered that the results were basically accordded with the current situations of human settlement in Dalian, and the evaluation results were more reliable, visualized and easily
基金supported by the National Natural Science Foundation of China (Grant Nos. 50739004 and 51009093)
文摘We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.