期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于流形学习和K-最近邻分类器的旋转机械故障诊断方法 被引量:30
1
作者 宋涛 汤宝平 李锋 《振动与冲击》 EI CSCD 北大核心 2013年第5期149-153,共5页
针对旋转机械故障诊断需人工干预、精度低、故障样本难以获取等问题,提出基于流形学习和K-最近邻分类器(KNNC)的故障诊断模型。提取振动信号多域信息熵以全面反映设备运行状态并构造高维特征集;利用正交邻域保持嵌入(ONPE)非线性流形学... 针对旋转机械故障诊断需人工干预、精度低、故障样本难以获取等问题,提出基于流形学习和K-最近邻分类器(KNNC)的故障诊断模型。提取振动信号多域信息熵以全面反映设备运行状态并构造高维特征集;利用正交邻域保持嵌入(ONPE)非线性流形学习算法的二次特征提取特性进行维数约简使特征具有更好的聚类特性;基于改进的更适用于小样本分类KNNC进行模式识别,用轴承故障诊断案例证明该模型的有效性。 展开更多
关键词 流形学习 正交邻域保持嵌入 信息熵 维数约简 模式识别
下载PDF
动态增殖流形学习算法在机械故障诊断中的应用 被引量:8
2
作者 宋涛 汤宝平 邓蕾 《振动与冲击》 EI CSCD 北大核心 2014年第23期15-19,29,共6页
针对现有的批量式流形学习算法无法利用已学习的流形结构实现新增样本的快速约简的缺点,提出增殖正交邻域保持嵌入(Incremental Orthogonal Neighborhood Preserving Embedding,IONPE)流形学习算法。该算法在正交邻域保持嵌入算法基础... 针对现有的批量式流形学习算法无法利用已学习的流形结构实现新增样本的快速约简的缺点,提出增殖正交邻域保持嵌入(Incremental Orthogonal Neighborhood Preserving Embedding,IONPE)流形学习算法。该算法在正交邻域保持嵌入算法基础上利用分块处理思想实现新增样本子集的动态约简。从原始样本中选取部分重叠点合并至新增样本,对重叠点和新增样本子集不依赖原始样本使用正交邻域保持嵌入(ONPE)进行独立约简获取低维嵌入坐标子集,并基于重叠点坐标差值最小化原则,将新增样本低维嵌入坐标通过旋转平移缩放整合到原样本子集中。齿轮箱故障诊断案例证实了IONPE算法具有良好的增量学习能力,在继承ONPE优良聚类特性的同时有效提高了新增样本约简效率。 展开更多
关键词 增殖流形学习 正交邻域保持嵌入 动态约简 分块处理 故障诊断
下载PDF
基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法 被引量:1
3
作者 刘韵佳 赵荣珍 王雪冬 《中国机械工程》 EI CAS CSCD 北大核心 2017年第21期2552-2556,共5页
针对转子故障特征数据集降维问题,提出一种基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法——Schur-ONPE降维方法。该方法首先应用小波包分解提取不同频带内的能量以组成故障特征值集合,然后运用Schur分解和ONPE算法将高维... 针对转子故障特征数据集降维问题,提出一种基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法——Schur-ONPE降维方法。该方法首先应用小波包分解提取不同频带内的能量以组成故障特征值集合,然后运用Schur分解和ONPE算法将高维特征集向低维投影,使降维后类内散度最小化及类间分离度最大化,最后将降维后得到的低维特征集输入K近邻分类器进行模式识别。通过双跨转子试验台的故障特征数据集进行验证,结果表明该方法能够有效地解决转子故障特征集的降维问题。 展开更多
关键词 故障诊断 数据降维 SCHUR分解 正交邻域保持嵌入算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部