采用量子力学与分子力学组合的ONIOM方法,研究了赖氨酸限域在水与MOR分子筛复合环境下的手性转变.结构分析表明:2个水分子比1个水分子助氢迁移反应的过渡态分子氢键键角显著增大。反应通道研究发现:标题反应有a、b和c三个通道,是赖氨酸...采用量子力学与分子力学组合的ONIOM方法,研究了赖氨酸限域在水与MOR分子筛复合环境下的手性转变.结构分析表明:2个水分子比1个水分子助氢迁移反应的过渡态分子氢键键角显著增大。反应通道研究发现:标题反应有a、b和c三个通道,是赖氨酸在MOR分子筛限域环境下,水助质子以氨基、羰基和羟基为桥从手性碳的一侧迁移到另一侧,实现手性转变。势能面计算表明,a是主反应通道,质子从手性碳向氨基的迁移是决速步骤,在2个水分子助决速步时,吉布斯自由能垒被降到最低值101.9 k J/mol,与裸反应、限域在MOR分子筛和限域在水环境的此通道决速步能垒252.6、229.7和123.9 k J/mol相比较,均有明显降低。结果表明:水与MOR分子筛复合环境对赖氨酸手性转变具有较好的共催化作用,左旋赖氨酸在生命体内可以缓慢地旋光异构。展开更多
采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在...采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在不同尺寸的扶椅型SWCNT内,手性转变反应均有a和b两个通道,a通道是手性C上的质子转移只以氨基上的N为桥;b通道是手性C的质子转移以羰基O和氨基N顺次为桥。势能面计算表明:SWCNT的孔径越小,反应能垒越低;在SWCNT(5,5)内,a通道最高能垒为198.7 k J·mol^(-1),比单体在此通道的最高能垒266.1 k J·mol^(-1)明显降低,b通道最高能垒为285.0 k J·mol^(-1),比单体在此通道的最高能垒326.6 k J·mol^(-1)也有明显的降低。结果表明:生命体内α-丙氨酸在纳米生物通道的手性转变过程主要是以氨基为质子转移桥梁实现;较小尺寸的纳米管反应器对α-丙氨酸手性转变反应的限域催化作用明显。展开更多
文摘采用量子力学与分子力学组合的ONIOM方法,研究了赖氨酸限域在水与MOR分子筛复合环境下的手性转变.结构分析表明:2个水分子比1个水分子助氢迁移反应的过渡态分子氢键键角显著增大。反应通道研究发现:标题反应有a、b和c三个通道,是赖氨酸在MOR分子筛限域环境下,水助质子以氨基、羰基和羟基为桥从手性碳的一侧迁移到另一侧,实现手性转变。势能面计算表明,a是主反应通道,质子从手性碳向氨基的迁移是决速步骤,在2个水分子助决速步时,吉布斯自由能垒被降到最低值101.9 k J/mol,与裸反应、限域在MOR分子筛和限域在水环境的此通道决速步能垒252.6、229.7和123.9 k J/mol相比较,均有明显降低。结果表明:水与MOR分子筛复合环境对赖氨酸手性转变具有较好的共催化作用,左旋赖氨酸在生命体内可以缓慢地旋光异构。
文摘采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在不同尺寸的扶椅型SWCNT内,手性转变反应均有a和b两个通道,a通道是手性C上的质子转移只以氨基上的N为桥;b通道是手性C的质子转移以羰基O和氨基N顺次为桥。势能面计算表明:SWCNT的孔径越小,反应能垒越低;在SWCNT(5,5)内,a通道最高能垒为198.7 k J·mol^(-1),比单体在此通道的最高能垒266.1 k J·mol^(-1)明显降低,b通道最高能垒为285.0 k J·mol^(-1),比单体在此通道的最高能垒326.6 k J·mol^(-1)也有明显的降低。结果表明:生命体内α-丙氨酸在纳米生物通道的手性转变过程主要是以氨基为质子转移桥梁实现;较小尺寸的纳米管反应器对α-丙氨酸手性转变反应的限域催化作用明显。