The incubation layers in microcrystalline silicon films (μc-Si:H) are studied in detail. The incubation layers in μc- Si:H films are investigated by biracial Raman spectra, and the results indicate that either d...The incubation layers in microcrystalline silicon films (μc-Si:H) are studied in detail. The incubation layers in μc- Si:H films are investigated by biracial Raman spectra, and the results indicate that either decreasing silane concentration (SC) or increasing plasma power can reduce the thickness of incubation layer. The analysis of the in-situ diagnosis by plasma optical emission spectrum (OES) shows that the emission intensities of the SiH*(412 nm) and Hα (656 nm) lines are time-dependent, thus SiH*/Hα ratio is of temporal evolution. The variation of SiH*/Hα ratio can indicate the variation in relative concentration of precursor and atomic hydrogen in the plasma. And the atomic hydrogen plays a crucial role in the formation of μc-Si:H; thus, with the plasma excited, the temporal-evolution SiH*/Hα ratio has a great influence on the formation of an incubation layer in the initial growth stage. The fact that decreasing the SC or increasing the plasma power can decrease the SIH*/Hα ratio is used to explain why the thickness of incubation layer can reduce with decreasing the SC or increasing the plasma power.展开更多
An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition ...An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition technology was adopted to grow GaN film on an α-Al2O3 substrate. X-ray diffraction (XRD) analyses showed that the peak of GaN (0002) was at 20 = 34.48°, being sharper and more intense with the increase in the Ne: trimethylgallium(TMG) flow ratio. The results demonstrate that the electron cyclotron resonance-plasma enchanced met- alorganic chemical vapor deposition (ECR-MOPECVD) technology is evidently advantageous for the deposition of GaN film at a low growth temperature.展开更多
Major and trace element in seven different kinds of milk powder were studied. The concentration of 24 elements were determined by ICP OES method, from these elements 9 elements determined by INAA. The determination o...Major and trace element in seven different kinds of milk powder were studied. The concentration of 24 elements were determined by ICP OES method, from these elements 9 elements determined by INAA. The determination of trace element contents of foodstuffs, especially milk as daily drink for all peoples age which being a complex food has great importance. The elemental analysis of milk is important both as an indicator of environmental contamination and because milk is a significant pathway for toxic metal intake and a source of essential nutrients for humans. The major elements are Ca, K, Mg, Na, P and S. While trace element are B, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Sb, Se, Sn, Sr, V, W and Zn. ICP OES technique is shown to be a powerful tool for trace determinations in powder samples. This is shown by its use for analysis of a series of the milk powders mentioned and comparative results of other direct technique such as instrumental neutron activation analysis. Analysis of both standard reference material A 11 milk powder and NBS Orchard leaves for quality accurance had been completed, and used for a relative method calculate. The importance of the major and trace elements to human health was discussed.展开更多
A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration o...A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration on structural and elec-trical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time,optical emis-sion spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties,Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism,why both OES and Raman can be used to diagnose the phase transition,was analyzed theoretically.展开更多
Magnetic pole enhanced inductively coupled plasmas (MaPE-ICPs) are a promising source for plasma-based etching and have a wide range of material processing applications. In the present study Langmuir probe and optic...Magnetic pole enhanced inductively coupled plasmas (MaPE-ICPs) are a promising source for plasma-based etching and have a wide range of material processing applications. In the present study Langmuir probe and optical emission spectroscopy were used to monitor the evolution of plasma parameters in a MaPE-ICP Ar-Na/He mixture plasma. Electron density (ne) and temperature (Te), excitation temperature (Texc), plasma potential (Vp), skin depth (6) and the evolution of the electron energy probability function (EEPF) are reported as a function of radiofrequency (RF) power, pressure and argon concentration in the mixture. It is observed that ne increases while Te decreases with increase in RF power and argon concentration in the mixture. The emission intensity of the argon line at 750.4 nm is also used to monitor the variation of the ‘high-energy tail' of the EEPF with RF power and gas pressure. The EEPF has a ‘bi-Maxwellian' distribution at low RF powers and higher pressure in a pure N2 discharge. However, it evolves into a ‘Maxwellian' distribution at RF powers greater than 70 W for pure N2, and at 50 W for higher argon concentrations in the mixture. The effect of argon concentration on the temperatures of two electron groups in the ‘bi-Maxwellian' EEPF is examined. The temperature of the low-energy electron group TL shows a decreasing trend with argon addition until the ‘thermalization' of the two temperatures occurs, while the temperature of high-energy electrons Ta decreases continuously.展开更多
This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the depo...This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition.展开更多
This work investigates internal plasma process parameters using a hairpin resonance probe and optical emission spectroscopy. The dependence of electron density and atomic fluorine on the percentage of oxygen in an SF6...This work investigates internal plasma process parameters using a hairpin resonance probe and optical emission spectroscopy. The dependence of electron density and atomic fluorine on the percentage of oxygen in an SF6/O2 discharge was measured using these methods. An RIE Oxford Instruments 80 plus chamber was used for the experiments. Two different process powers (100 W and 300 W) at a constant pressure (100 mTorr) were used, and it was found that the optical emission intensity of the 703.7 nm and 685.6 nm lines of atomic fluorine increased rapidly as oxygen was added to the SF6 discharge, reached their maximum at an O2 fraction of 20% and then decreased with further addition of oxygen. The plasma electron density was also strongly influenced by the addition of O2.展开更多
Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize ...Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize the structure of the copper oxide samples treated by DBD plasma. Influences of H2 content and the treating time on the reduction of copper oxide by DBD plasma were investigated. The results show that the reduction ratio of copper oxide was increased initially and then decreased with increasing H2 content, and the highest reduction ratio was achieved at 20% H2 content. Moreover, the copper oxide samples were gradually reduced by DBD plasma into copper nanoparticles with the increase in treating time. However, the average reduction rate was decreased as a result of the diffusion of the active hydrogen species. Optical emission spectra (OES) were observed during the reduction of the copper oxide samples by DBD plasma, and the reduction mechanism was explored accordingly. Instead of high-energy electrons, atomic hydrogen (H) radicals, and the heating effect, excited-state hydrogen molecules are suspected to be one kind of important reducing agents. Atmospheric-pressure DBD cold plasma is proved to be an efficient method for preparing copper nanoparticles.展开更多
To deposit TiO2 films through plasma CVD, the partial pressure ratio of O2 to TIC14 should be greater than the stoichiometric ratio (PO2/PTiCl4 〉 1). However, this may lead to the formation of powder instead of fil...To deposit TiO2 films through plasma CVD, the partial pressure ratio of O2 to TIC14 should be greater than the stoichiometric ratio (PO2/PTiCl4 〉 1). However, this may lead to the formation of powder instead of film on the substrate when using volume dielectric barrier discharge (volume-DBD) at atmospheric pressure. In this study, by adding N2 into the working gas Ar, TiO2 photocatalytic films were successfully fabricated in the presence of excess O2 (PO2/PTiC14 = 2.6) by using a wire-to-plate atmospheric-pressure volume-DBD. The tuning effect of N2 on the deposition of TiO2 film was studied in detail. The results showed that by increasing the N2 content, the deposition rate and particle size of the TiO2 film were reduced, and its photocatalytic activity was enhanced. The tuning mechanism of N2 is further discussed.展开更多
文摘The incubation layers in microcrystalline silicon films (μc-Si:H) are studied in detail. The incubation layers in μc- Si:H films are investigated by biracial Raman spectra, and the results indicate that either decreasing silane concentration (SC) or increasing plasma power can reduce the thickness of incubation layer. The analysis of the in-situ diagnosis by plasma optical emission spectrum (OES) shows that the emission intensities of the SiH*(412 nm) and Hα (656 nm) lines are time-dependent, thus SiH*/Hα ratio is of temporal evolution. The variation of SiH*/Hα ratio can indicate the variation in relative concentration of precursor and atomic hydrogen in the plasma. And the atomic hydrogen plays a crucial role in the formation of μc-Si:H; thus, with the plasma excited, the temporal-evolution SiH*/Hα ratio has a great influence on the formation of an incubation layer in the initial growth stage. The fact that decreasing the SC or increasing the plasma power can decrease the SIH*/Hα ratio is used to explain why the thickness of incubation layer can reduce with decreasing the SC or increasing the plasma power.
基金National Natural Science Foundation of China(No.10575039)the Chinese Specialized Research Fund for Doctoral Programs in Higher Education(2004057408)+1 种基金the Fund for Key Science Research Projects of Guangdong Province,China(05100534)the Science Project Foundation of Guangzhou City,China(2005Z3-D2031)
文摘An investigation was made into the nitrogen-trimethylgallium mixed electron cyclotron resonance (ECR) plasma by optical emission spectroscopy (OES). The ECR plasma enhanced metalorganic chemical vapour deposition technology was adopted to grow GaN film on an α-Al2O3 substrate. X-ray diffraction (XRD) analyses showed that the peak of GaN (0002) was at 20 = 34.48°, being sharper and more intense with the increase in the Ne: trimethylgallium(TMG) flow ratio. The results demonstrate that the electron cyclotron resonance-plasma enchanced met- alorganic chemical vapor deposition (ECR-MOPECVD) technology is evidently advantageous for the deposition of GaN film at a low growth temperature.
文摘Major and trace element in seven different kinds of milk powder were studied. The concentration of 24 elements were determined by ICP OES method, from these elements 9 elements determined by INAA. The determination of trace element contents of foodstuffs, especially milk as daily drink for all peoples age which being a complex food has great importance. The elemental analysis of milk is important both as an indicator of environmental contamination and because milk is a significant pathway for toxic metal intake and a source of essential nutrients for humans. The major elements are Ca, K, Mg, Na, P and S. While trace element are B, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Sb, Se, Sn, Sr, V, W and Zn. ICP OES technique is shown to be a powerful tool for trace determinations in powder samples. This is shown by its use for analysis of a series of the milk powders mentioned and comparative results of other direct technique such as instrumental neutron activation analysis. Analysis of both standard reference material A 11 milk powder and NBS Orchard leaves for quality accurance had been completed, and used for a relative method calculate. The importance of the major and trace elements to human health was discussed.
基金Supported by the National Basic Research Program of China (Grant Nos. 2006CB202602 and 2006CB202603)
文摘A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration on structural and elec-trical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time,optical emis-sion spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties,Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism,why both OES and Raman can be used to diagnose the phase transition,was analyzed theoretically.
基金aided by the Higher Education Commission(HEC)under the NRPU Research Project no.2997/R&D/14 COMSATS Institute of Information TechnologyHEC Research Project no.20-2002(R&D)Quaid-i-Azam University
文摘Magnetic pole enhanced inductively coupled plasmas (MaPE-ICPs) are a promising source for plasma-based etching and have a wide range of material processing applications. In the present study Langmuir probe and optical emission spectroscopy were used to monitor the evolution of plasma parameters in a MaPE-ICP Ar-Na/He mixture plasma. Electron density (ne) and temperature (Te), excitation temperature (Texc), plasma potential (Vp), skin depth (6) and the evolution of the electron energy probability function (EEPF) are reported as a function of radiofrequency (RF) power, pressure and argon concentration in the mixture. It is observed that ne increases while Te decreases with increase in RF power and argon concentration in the mixture. The emission intensity of the argon line at 750.4 nm is also used to monitor the variation of the ‘high-energy tail' of the EEPF with RF power and gas pressure. The EEPF has a ‘bi-Maxwellian' distribution at low RF powers and higher pressure in a pure N2 discharge. However, it evolves into a ‘Maxwellian' distribution at RF powers greater than 70 W for pure N2, and at 50 W for higher argon concentrations in the mixture. The effect of argon concentration on the temperatures of two electron groups in the ‘bi-Maxwellian' EEPF is examined. The temperature of the low-energy electron group TL shows a decreasing trend with argon addition until the ‘thermalization' of the two temperatures occurs, while the temperature of high-energy electrons Ta decreases continuously.
文摘This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition.
基金supported by the EC Framework 7 IMPROVE research project (IR -2008-0013)the Science Foundation Ireland PRECISION project (08-SRC-I1411)
文摘This work investigates internal plasma process parameters using a hairpin resonance probe and optical emission spectroscopy. The dependence of electron density and atomic fluorine on the percentage of oxygen in an SF6/O2 discharge was measured using these methods. An RIE Oxford Instruments 80 plus chamber was used for the experiments. Two different process powers (100 W and 300 W) at a constant pressure (100 mTorr) were used, and it was found that the optical emission intensity of the 703.7 nm and 685.6 nm lines of atomic fluorine increased rapidly as oxygen was added to the SF6 discharge, reached their maximum at an O2 fraction of 20% and then decreased with further addition of oxygen. The plasma electron density was also strongly influenced by the addition of O2.
基金supported by National Natural Science Foundation of China(No.21173028)the Science and Technology Research Project of Liaoning Provincial Education Department of China(No.L2013464)the Scientific Research Foundation for the Doctor of Liaoning Province of China(No.20131004)
文摘Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize the structure of the copper oxide samples treated by DBD plasma. Influences of H2 content and the treating time on the reduction of copper oxide by DBD plasma were investigated. The results show that the reduction ratio of copper oxide was increased initially and then decreased with increasing H2 content, and the highest reduction ratio was achieved at 20% H2 content. Moreover, the copper oxide samples were gradually reduced by DBD plasma into copper nanoparticles with the increase in treating time. However, the average reduction rate was decreased as a result of the diffusion of the active hydrogen species. Optical emission spectra (OES) were observed during the reduction of the copper oxide samples by DBD plasma, and the reduction mechanism was explored accordingly. Instead of high-energy electrons, atomic hydrogen (H) radicals, and the heating effect, excited-state hydrogen molecules are suspected to be one kind of important reducing agents. Atmospheric-pressure DBD cold plasma is proved to be an efficient method for preparing copper nanoparticles.
基金supported by National Natural Science Foundation of China(Nos.10835004,51077009)the Fundamental Research Funds for the Central Universities
文摘To deposit TiO2 films through plasma CVD, the partial pressure ratio of O2 to TIC14 should be greater than the stoichiometric ratio (PO2/PTiCl4 〉 1). However, this may lead to the formation of powder instead of film on the substrate when using volume dielectric barrier discharge (volume-DBD) at atmospheric pressure. In this study, by adding N2 into the working gas Ar, TiO2 photocatalytic films were successfully fabricated in the presence of excess O2 (PO2/PTiC14 = 2.6) by using a wire-to-plate atmospheric-pressure volume-DBD. The tuning effect of N2 on the deposition of TiO2 film was studied in detail. The results showed that by increasing the N2 content, the deposition rate and particle size of the TiO2 film were reduced, and its photocatalytic activity was enhanced. The tuning mechanism of N2 is further discussed.