【目的/意义】为推动深度学习在网络舆情管理中的应用,提高突发灾害事件网络舆情情感识别效率。【方法/过程】基于OCC模型建立了突发自然灾害网络舆情情感规则,并由word2vec构建文本向量作为长短期记忆网络(Long-short term memory,LSTM...【目的/意义】为推动深度学习在网络舆情管理中的应用,提高突发灾害事件网络舆情情感识别效率。【方法/过程】基于OCC模型建立了突发自然灾害网络舆情情感规则,并由word2vec构建文本向量作为长短期记忆网络(Long-short term memory,LSTM)的初始输入,对其训练得到突发灾害事件网络舆情多情感识别模型。【结果/结论】通过对比试验发现,OCC情感规则能够提升情感识别模型的正确率,基于LSTM和word2vec的突发灾害事件网络舆情情感识别模型在情感识别效果上优于TF-IDF文本向量化方法以及基于卷积神经网络(Convolutional neural network,CNN)和传统的机器学习方式(Support vector machine,SVM)的分类算法结果。展开更多
为了解决财经微博文本中网民情感状态转移的时序数据分析问题,本文提出一个基于认知情感评价模型(Ortony,Clore&Collins,OCC)和长短期记忆模型(long short term memory,LSTM)的财经微博文本情感分类模型(OCC-LSTM)。基于OCC模型从...为了解决财经微博文本中网民情感状态转移的时序数据分析问题,本文提出一个基于认知情感评价模型(Ortony,Clore&Collins,OCC)和长短期记忆模型(long short term memory,LSTM)的财经微博文本情感分类模型(OCC-LSTM)。基于OCC模型从网民认知角度建立情感规则,对财经微博文本进行情感标注,并作为LSTM模型进行深度学习的训练集;基于LSTM模型,使用深度学习中的TensorFlow框架和Keras模块建立相应的实验模型,进行海量微博数据情感分类,并结合13家上市公司3年的微博文本数据进行实证研究和模型验证对比。实证研究结果发现本文提出的模型取得了89.45%的准确率,高于采用传统的机器学习方式的支持向量机方法 (support vector machine,SVM)和基于深度学习的半监督RAE方法 (semi-supervised recursive auto encoder)。展开更多
文摘为了解决财经微博文本中网民情感状态转移的时序数据分析问题,本文提出一个基于认知情感评价模型(Ortony,Clore&Collins,OCC)和长短期记忆模型(long short term memory,LSTM)的财经微博文本情感分类模型(OCC-LSTM)。基于OCC模型从网民认知角度建立情感规则,对财经微博文本进行情感标注,并作为LSTM模型进行深度学习的训练集;基于LSTM模型,使用深度学习中的TensorFlow框架和Keras模块建立相应的实验模型,进行海量微博数据情感分类,并结合13家上市公司3年的微博文本数据进行实证研究和模型验证对比。实证研究结果发现本文提出的模型取得了89.45%的准确率,高于采用传统的机器学习方式的支持向量机方法 (support vector machine,SVM)和基于深度学习的半监督RAE方法 (semi-supervised recursive auto encoder)。