Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the ...Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the extinct ridge in the central South China Sea(SCS), we carried out a passive source OBS array experiment, which includes 18 OBSs, in the deep portion of SCS. Here we present the instrumentation, the OBS deployment and recovery of this experiment, and more importantly, the data quality evaluated by a number of approaches. Through processing and inspecting waveforms from global, regional and local earthquakes, we find that most of recovered OBSs have good data quality with discernible main phases. The ambient noise analyses of OBS recordings show that their noise is higher than the global average, and the horizontal component is noisier than the vertical, indicating current impacts on horizontal components are more severe. In the period range of 5–10 s, there is a noise notch for the SCS OBSs, and noise levels of horizontal components are comparable to the vertical. This feature, which is not seen at OBS stations in open ocean, suggests the distant sources for double frequency microseism in this marginal sea are not significant. In addition, we successfully determined the orientations for 7 OBSs by investigating their Rayleigh wave polarizations; and we demonstrated the dispersion feature of Rayleigh waves through the frequency-time analysis. Finally, we summarized lessons learned from this experiment regarding the passive source OBS investigations in SCS.展开更多
Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orien...Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orientated in NNW-SSE, was as long as 500 km and perpendicular to the strike of regional tectonics. The offshore data were processed in Taiwan Ocean University using a number of available software and the onshore data were analyzed in South China Sea Institute of Oceanology by new-written programs and public software. Preliminary results show that the seismic data are in good quality and contain rich information of deep structure. Seismic phases, e.g. Pg, PmP and Pn, are identified in the offset range 5~220 kin, which will provide an important dataset for the deep crustal structure and oil-gas basin evolution studies of this region.展开更多
基金supported by National Natural Science Foundation of China(91128209 and 40176019)StateKey Laboratory of Marine Geology at Tongji University(MG20130306)
文摘Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the extinct ridge in the central South China Sea(SCS), we carried out a passive source OBS array experiment, which includes 18 OBSs, in the deep portion of SCS. Here we present the instrumentation, the OBS deployment and recovery of this experiment, and more importantly, the data quality evaluated by a number of approaches. Through processing and inspecting waveforms from global, regional and local earthquakes, we find that most of recovered OBSs have good data quality with discernible main phases. The ambient noise analyses of OBS recordings show that their noise is higher than the global average, and the horizontal component is noisier than the vertical, indicating current impacts on horizontal components are more severe. In the period range of 5–10 s, there is a noise notch for the SCS OBSs, and noise levels of horizontal components are comparable to the vertical. This feature, which is not seen at OBS stations in open ocean, suggests the distant sources for double frequency microseism in this marginal sea are not significant. In addition, we successfully determined the orientations for 7 OBSs by investigating their Rayleigh wave polarizations; and we demonstrated the dispersion feature of Rayleigh waves through the frequency-time analysis. Finally, we summarized lessons learned from this experiment regarding the passive source OBS investigations in SCS.
基金Supported by SCSIO(LYQY200302)the Chinese Ministry of Science and Technology(G2000046701)+2 种基金the Guangdong Department of Science and Technology(2002C32604)the Guangdong Natural Science Foundation(021557)the National Natural Science Foundation of China(4000161958).
文摘Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orientated in NNW-SSE, was as long as 500 km and perpendicular to the strike of regional tectonics. The offshore data were processed in Taiwan Ocean University using a number of available software and the onshore data were analyzed in South China Sea Institute of Oceanology by new-written programs and public software. Preliminary results show that the seismic data are in good quality and contain rich information of deep structure. Seismic phases, e.g. Pg, PmP and Pn, are identified in the offset range 5~220 kin, which will provide an important dataset for the deep crustal structure and oil-gas basin evolution studies of this region.