Using the multi-configuration Dirac-Fock self-consistent field method and the relativistic configuration interaction method with quantum-electrodynamics corrections performed by the GRASP code, we calculate the fine-s...Using the multi-configuration Dirac-Fock self-consistent field method and the relativistic configuration interaction method with quantum-electrodynamics corrections performed by the GRASP code, we calculate the fine-structure energy levels of the ground-state configuration (1s^22s^22p^3) of the nitrogen isoelectronic sequence, according to the L-S coupling scheme with atomic number Z up to 22. Based on the calculated results, we elucidate the mechanism of the orderings of fine-structure energy levels of 2^ D3/2,5/2 and 2^P1/2,3/2 respectively, i.e. for 2^D3/2,5/2 orderings, the competition between the spin-orbit interactions and the Breit interactions; for 2^P1/2,3/2 orderings, the electron correlations, especially the electron correlations owing to the 2p^5 configuration interactions.展开更多
基金Supported by the Key Project of the Ministry of Education of China under Grant No 306020, the National Natural Science Foundation of China, the National High-Tech ICF Committee in China and the Yin-He Super-computer Center, Institute of Applied Physics and Mathematics, Beijing, China, and the National Basic Research Programme of China under Grant No 2006CB921408.
文摘Using the multi-configuration Dirac-Fock self-consistent field method and the relativistic configuration interaction method with quantum-electrodynamics corrections performed by the GRASP code, we calculate the fine-structure energy levels of the ground-state configuration (1s^22s^22p^3) of the nitrogen isoelectronic sequence, according to the L-S coupling scheme with atomic number Z up to 22. Based on the calculated results, we elucidate the mechanism of the orderings of fine-structure energy levels of 2^ D3/2,5/2 and 2^P1/2,3/2 respectively, i.e. for 2^D3/2,5/2 orderings, the competition between the spin-orbit interactions and the Breit interactions; for 2^P1/2,3/2 orderings, the electron correlations, especially the electron correlations owing to the 2p^5 configuration interactions.