The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the...The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.展开更多
The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetatio...The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the t展开更多
In order to improve the low positioning accuracy and execution efficiency of the robot binocular vision,a binocular vision positioning method based on coarse-fine stereo matching is proposed to achieve object position...In order to improve the low positioning accuracy and execution efficiency of the robot binocular vision,a binocular vision positioning method based on coarse-fine stereo matching is proposed to achieve object positioning.The random fern is used in the coarse matching to identify objects in the left and right images,and the pixel coordinates of the object center points in the two images are calculated to complete the center matching.In the fine matching,the right center point is viewed as an estimated value to set the search range of the right image,in which the region matching is implemented to find the best matched point of the left center point.Then,the similar triangle principle of the binocular vision model is used to calculate the 3D coordinates of the center point,achieving fast and accurate object positioning.Finally,the proposed method is applied to the object scene images and the robotic arm grasping platform.The experimental results show that the average absolute positioning error and average relative positioning error of the proposed method are 8.22 mm and 1.96%respectively when the object's depth distance is within 600 mm,the time consumption is less than 1.029s.The method can meet the needs of the robot grasping system,and has better accuracy and robustness.展开更多
It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in t...It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in the pristine conditions of 58 woodland National Nature Reserves(NNRs)located in the upper Yangtze River basin(UYRB)in China which are little influenced by human activities.Changes in the normalized difference vegetation index(NDVI),precipitation,and temperature in the selected NNRs were observed and analyzed for the period between 1999 and 2015.The relationship between time-lag effect of climate and changes in the NDVI were assessed using Pearson correlations.The results showed three major trends.1)The NDVI increased during the study period;this indicates an increase in the amount of green vegetation,especially due to the warmer climate during the growing season.The NDVIs in March and September were significantly affected by the temperature of the previous months.Spring temperatures increased significantly(P<0.05)and there was a delay between climatic factors and their effect on vegetation,which depended on the previous season.In particular,the spring temperature had a delayed effect on the NDVI in summer.2)The way in which vegetation responds to climatic factors varied significantly across the seasons.Temperature had a greater effect on the NDVI in spring and summer and the effect was greater at higher altitudes.A similar trend was observed for precipitation,except for altitudes of 1000–2000 m.3)Temperature had a greater effect on the NDVI in spring and autumn at higher altitudes.The same trend was observed for precipitation in summer.These findings suggest that the vegetation found in NNRs in the upper reaches of the Yangtze River was in good condition between 1999 and 2015 and that the growth and development of vegetation in the region has not been adversely affected by climate change.This demonstrates the effectiveness of nature reserves in protecting regional ecology and minimizing anthropogeni展开更多
Climatic factors impact vegetation. Our study was to examine and analyze the climate variability and relationship to vegetation in Garamba National Park of the Democratic Republic of the Congo over the past 30 years (...Climatic factors impact vegetation. Our study was to examine and analyze the climate variability and relationship to vegetation in Garamba National Park of the Democratic Republic of the Congo over the past 30 years (1990 to 2020), then to relate the climatic variables. Mann Kendall’s non parametric test, ANOVA, and p-value tests are used to analyze existing trends and relationships between vegetation cover, climatic factors, land surface temperature (LST) and normalized difference in temperature Vegetation index (NDVI), Enhanced vegetation index (EVI) in Garamba national park which is of particular importance for the network of protected areas of the Democratic republic of Congo because its position at the northern limit of the savanna-forest mosaics gives it a unique biodiversity. The southern part of the park is dominated by grassy shrub savannas. The results showed that: 1) In Garamba, the monthly correlation coefficient of Kendall and Pearsan between temperature and precipitation are negative respectively 0.763 and <span style="white-space:nowrap;">−</span>0.876 (p-value < 0.00001). 2) Annually during the three decades in Garamba, the correlation between precipitation and NDVI is significant 0.416 (Kendall) and 0.496 (Pearsan);the same between precipitation and EVI 0.291 (Kendall) and 0.496 (Pearsan) while LST and precipitation are negatively correlated (p-value < 0.00001).展开更多
基金National Key Research and Development Program on Enhancement of Soil and Water Ecological Security and Guarantee Technology in Desert Oasis Areas(2023YFF130420103)Three North Project of Xinhua Forestry Highland Demonstration Science and Technology Construction Project,the Technology and Demonstration of Near-Natural Modification of Artificial Protective Forest Structures and Enhancement of Soil and Water Conservation Functions in Ecological Protection Belt(2023YFF1305201)+2 种基金Multi-dimensional Coupled Soil-surface-groundwater Hydrological Processes and Vegetation Regulation Mechanism in Loess Area of the National Natural Science Foundation of China(U2243202)Hot Tracking Program of Beijing Forestry University"Planting a Billion Trees"Program and China-Mongolia Cooperation on Desertification in China(2023BLRD04)Research on Ecological Photovoltaic Vegetation Configuration Model and Restoration Technology(AMKJ2023-17).
文摘The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.
基金supported by the National Natural Science Foundation of China (42377472, 42174055)the Jiangxi Provincial Social Science "Fourteenth Five-Year Plan" (2024) Fund Project (24GL45)+1 种基金the Research Center of Resource and Environment Economics (20RGL01)the Provincial Finance Project of Jiangxi Academy of Sciences-Young Talent Cultivation Program (2023YSBG50010)
文摘The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the t
基金supported by National Natural Science Foundation of China(No.61125101)。
文摘In order to improve the low positioning accuracy and execution efficiency of the robot binocular vision,a binocular vision positioning method based on coarse-fine stereo matching is proposed to achieve object positioning.The random fern is used in the coarse matching to identify objects in the left and right images,and the pixel coordinates of the object center points in the two images are calculated to complete the center matching.In the fine matching,the right center point is viewed as an estimated value to set the search range of the right image,in which the region matching is implemented to find the best matched point of the left center point.Then,the similar triangle principle of the binocular vision model is used to calculate the 3D coordinates of the center point,achieving fast and accurate object positioning.Finally,the proposed method is applied to the object scene images and the robotic arm grasping platform.The experimental results show that the average absolute positioning error and average relative positioning error of the proposed method are 8.22 mm and 1.96%respectively when the object's depth distance is within 600 mm,the time consumption is less than 1.029s.The method can meet the needs of the robot grasping system,and has better accuracy and robustness.
基金funded by the 135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS-135-1703)the Science and Technology Service Network Initiative of Chinese Academy of Sciences:Ecological Risk Assessment and Protection of the Yangtze River Economic Belt(KFJ-STS-ZDTP)
文摘It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in the pristine conditions of 58 woodland National Nature Reserves(NNRs)located in the upper Yangtze River basin(UYRB)in China which are little influenced by human activities.Changes in the normalized difference vegetation index(NDVI),precipitation,and temperature in the selected NNRs were observed and analyzed for the period between 1999 and 2015.The relationship between time-lag effect of climate and changes in the NDVI were assessed using Pearson correlations.The results showed three major trends.1)The NDVI increased during the study period;this indicates an increase in the amount of green vegetation,especially due to the warmer climate during the growing season.The NDVIs in March and September were significantly affected by the temperature of the previous months.Spring temperatures increased significantly(P<0.05)and there was a delay between climatic factors and their effect on vegetation,which depended on the previous season.In particular,the spring temperature had a delayed effect on the NDVI in summer.2)The way in which vegetation responds to climatic factors varied significantly across the seasons.Temperature had a greater effect on the NDVI in spring and summer and the effect was greater at higher altitudes.A similar trend was observed for precipitation,except for altitudes of 1000–2000 m.3)Temperature had a greater effect on the NDVI in spring and autumn at higher altitudes.The same trend was observed for precipitation in summer.These findings suggest that the vegetation found in NNRs in the upper reaches of the Yangtze River was in good condition between 1999 and 2015 and that the growth and development of vegetation in the region has not been adversely affected by climate change.This demonstrates the effectiveness of nature reserves in protecting regional ecology and minimizing anthropogeni
文摘Climatic factors impact vegetation. Our study was to examine and analyze the climate variability and relationship to vegetation in Garamba National Park of the Democratic Republic of the Congo over the past 30 years (1990 to 2020), then to relate the climatic variables. Mann Kendall’s non parametric test, ANOVA, and p-value tests are used to analyze existing trends and relationships between vegetation cover, climatic factors, land surface temperature (LST) and normalized difference in temperature Vegetation index (NDVI), Enhanced vegetation index (EVI) in Garamba national park which is of particular importance for the network of protected areas of the Democratic republic of Congo because its position at the northern limit of the savanna-forest mosaics gives it a unique biodiversity. The southern part of the park is dominated by grassy shrub savannas. The results showed that: 1) In Garamba, the monthly correlation coefficient of Kendall and Pearsan between temperature and precipitation are negative respectively 0.763 and <span style="white-space:nowrap;">−</span>0.876 (p-value < 0.00001). 2) Annually during the three decades in Garamba, the correlation between precipitation and NDVI is significant 0.416 (Kendall) and 0.496 (Pearsan);the same between precipitation and EVI 0.291 (Kendall) and 0.496 (Pearsan) while LST and precipitation are negatively correlated (p-value < 0.00001).