The paper deals with the existence of three- solutions for the second- order differential equations with nonlinear boundary value conditions x″=f(t,x,x′) , t∈ [a,b], g1(x(a) ,x′(a) ) =0 , g2 (x(b) ,x′(...The paper deals with the existence of three- solutions for the second- order differential equations with nonlinear boundary value conditions x″=f(t,x,x′) , t∈ [a,b], g1(x(a) ,x′(a) ) =0 , g2 (x(b) ,x′(b) ) =0 , where f :[a,b]× R1× R1→ R1,gi:R1× R1→ R1(i=1 ,2 ) are continuous functions.The methods employed are the coincidence degree theory.As an application,the sufficient conditions under which there are arbitrary odd solutions for the BVP are obtained展开更多
We consider the boundary value problem for the second order quasilinear differential equationwhere f is allowed to change sign, φ(v) = \v\p-2v, p > 1. Using a new fixed point theorem in double cones, we show the e...We consider the boundary value problem for the second order quasilinear differential equationwhere f is allowed to change sign, φ(v) = \v\p-2v, p > 1. Using a new fixed point theorem in double cones, we show the existence of at least two positive solutions of the boundary value problem.展开更多
文摘The paper deals with the existence of three- solutions for the second- order differential equations with nonlinear boundary value conditions x″=f(t,x,x′) , t∈ [a,b], g1(x(a) ,x′(a) ) =0 , g2 (x(b) ,x′(b) ) =0 , where f :[a,b]× R1× R1→ R1,gi:R1× R1→ R1(i=1 ,2 ) are continuous functions.The methods employed are the coincidence degree theory.As an application,the sufficient conditions under which there are arbitrary odd solutions for the BVP are obtained
基金The project is supported by the National Natural Science Foundation of China(19871005)the Scientific Research Foundation of the Education Department of Hebei Province(2001111).
文摘We consider the boundary value problem for the second order quasilinear differential equationwhere f is allowed to change sign, φ(v) = \v\p-2v, p > 1. Using a new fixed point theorem in double cones, we show the existence of at least two positive solutions of the boundary value problem.