An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approxi...An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approximate schemes, which are the same as the traditional finite element methods. In addition, the global superconvergence is derived through the postprocessing technique. Numerical experiments are included to illustrate the feasibility of the proposed method.展开更多
Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to pres...Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and L^2-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis.展开更多
This paper is devoted to the five parameters nonconforming finite element schemes with moving grids for velocity-pressure mixed formulations of the nonstationary Stokes problem in 2-D. We show that this element has an...This paper is devoted to the five parameters nonconforming finite element schemes with moving grids for velocity-pressure mixed formulations of the nonstationary Stokes problem in 2-D. We show that this element has anisotropic behavior and derive anisotropic error estimations in some certain norms of the velocity and the pressure based on some novel techniques. Especially through careful analysis we get an interesting result on consistency error estimation, which has never been seen for mixed finite element methods in the previously literatures.展开更多
The main aim of this paper is to study the superconvergence accuracy analysis of the famous ACM's nonconforming finite element for biharmonic equation under anisotropic meshes. By using some novel approaches and tech...The main aim of this paper is to study the superconvergence accuracy analysis of the famous ACM's nonconforming finite element for biharmonic equation under anisotropic meshes. By using some novel approaches and techniques, the optimal anisotropic interpolation error and consistency error estimates are obtained. The global error is of order O(h^2). Lastly, some numerical tests are presented to verify the theoretical analysis.展开更多
In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any high...In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any higher dimensions respectively. These elements are all proved to be convergent for a model biharmonic equation in n dimensions.展开更多
In this paper, we discuss a posteriori error estimates of the eigenvalue λ[sub h] given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ[sub h]. We prove that the orde...In this paper, we discuss a posteriori error estimates of the eigenvalue λ[sub h] given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ[sub h]. We prove that the order of convergence of the λ[sub h] is just 2 and the converge from below for sufficiently small h. [ABSTRACT FROM AUTHOR]展开更多
This paper is devoted to analysis of the nonconforming element approximation to the obstacle problem, and improvement and correction of the results in [11], [12].
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming finite element methods. We start with an explicit relation between the error constan...In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming finite element methods. We start with an explicit relation between the error constant of the lowest order Raviart-Thomas interpolation error and the geometric characters of the triangle. This gives an explicit error constant of the lowest order mixed finite element method. Furthermore, similar results can be ex- tended to the nonconforming P1 scheme based on its close connection with the lowest order Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as computable error bounds, which are also consistent with the maximal angle condition for the optimal error estimates of mixed and nonconforming finite element methods.展开更多
In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolat...In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order (O(h2), is also proposed.展开更多
We design a family of 2D Hm-nonconforming finite elements using the full P2m-3 degree polynomial space, for solving 2ruth elliptic partial differential equations. The consistent error is estimated and the optimal orde...We design a family of 2D Hm-nonconforming finite elements using the full P2m-3 degree polynomial space, for solving 2ruth elliptic partial differential equations. The consistent error is estimated and the optimal order of conver- gence is proved. Numerical tests on the new elements for solving tri-harmonic, 4-harmonic, 5-harmonic and 6-harmonic equations are presented, to verify the theory.展开更多
基金supported by the National Natural Science Foundation of China No.10671184
文摘An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approximate schemes, which are the same as the traditional finite element methods. In addition, the global superconvergence is derived through the postprocessing technique. Numerical experiments are included to illustrate the feasibility of the proposed method.
文摘Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and L^2-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis.
基金This research is supported by the National Science Foundation of China(No.10371113).The authors would like to thank the anonymous referees for their helpful suggestions.
文摘This paper is devoted to the five parameters nonconforming finite element schemes with moving grids for velocity-pressure mixed formulations of the nonstationary Stokes problem in 2-D. We show that this element has anisotropic behavior and derive anisotropic error estimations in some certain norms of the velocity and the pressure based on some novel techniques. Especially through careful analysis we get an interesting result on consistency error estimation, which has never been seen for mixed finite element methods in the previously literatures.
文摘The main aim of this paper is to study the superconvergence accuracy analysis of the famous ACM's nonconforming finite element for biharmonic equation under anisotropic meshes. By using some novel approaches and techniques, the optimal anisotropic interpolation error and consistency error estimates are obtained. The global error is of order O(h^2). Lastly, some numerical tests are presented to verify the theoretical analysis.
基金The work of the first author was supported by the National Natural Science Fbundation of china(10571006)The work of the shird author was supperted by the Changjiang Professorship of the Ministry of Education of China through Peking University
文摘In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any higher dimensions respectively. These elements are all proved to be convergent for a model biharmonic equation in n dimensions.
文摘In this paper, we discuss a posteriori error estimates of the eigenvalue λ[sub h] given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ[sub h]. We prove that the order of convergence of the λ[sub h] is just 2 and the converge from below for sufficiently small h. [ABSTRACT FROM AUTHOR]
基金The project was supported by the National Natural Science Foundation of China
文摘This paper is devoted to analysis of the nonconforming element approximation to the obstacle problem, and improvement and correction of the results in [11], [12].
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金supported by the Special Funds for Major State Basic Research Project(No.2005CB321701)
文摘In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming finite element methods. We start with an explicit relation between the error constant of the lowest order Raviart-Thomas interpolation error and the geometric characters of the triangle. This gives an explicit error constant of the lowest order mixed finite element method. Furthermore, similar results can be ex- tended to the nonconforming P1 scheme based on its close connection with the lowest order Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as computable error bounds, which are also consistent with the maximal angle condition for the optimal error estimates of mixed and nonconforming finite element methods.
基金The work was supported by the National Natural Science Foundation of China (10871011).
文摘In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order (O(h2), is also proposed.
基金supported by NSFC projection 11625101,91430213 and 11421101
文摘We design a family of 2D Hm-nonconforming finite elements using the full P2m-3 degree polynomial space, for solving 2ruth elliptic partial differential equations. The consistent error is estimated and the optimal order of conver- gence is proved. Numerical tests on the new elements for solving tri-harmonic, 4-harmonic, 5-harmonic and 6-harmonic equations are presented, to verify the theory.