The Earth has grown from chaotically mixed small dusts and gases to its present highly differentiated layered structure over the past 4.567 billion years. This differentiation has led to the formation of the atmospher...The Earth has grown from chaotically mixed small dusts and gases to its present highly differentiated layered structure over the past 4.567 billion years. This differentiation has led to the formation of the atmosphere, hydrosphere,biosphere, crust, mantle, and core. The timing and mechanism for the formation and evolution of these different layers are still subjects of intense debate. This review brings together recent advances in using non-traditional stable isotopes to constrain major events and processes leading to the formation and differentiation of the Earth, including the Moon-forming giant impact, crustmantle interactions, evolution of life, the rise of atmospheric oxygen, extreme paleoclimate changes, and cooling rate of magmas.展开更多
Cadmium(Cd) is a scarce, but not an extremely rare element in the Earth's crust(crustal average: 0.2 ppm Cd). Geochemically, Cd exhibits thiophile, lithophile, and volatile behavior in different geologic process...Cadmium(Cd) is a scarce, but not an extremely rare element in the Earth's crust(crustal average: 0.2 ppm Cd). Geochemically, Cd exhibits thiophile, lithophile, and volatile behavior in different geologic processes. Biologically, it is a nutrient-like element that is closely related to P and Zn and is toxic element to organisms. Presently, Cd isotopes have been successfully utilized to trace Cd sources and nutrient cycling in marine systems in addition to unearthing other geochemical processes. Using published studies and our recent work, this survey summarizes the chemical preparation and mass spectrometry of Cd isotopes. It also reviews Cd isotopic compositions and fractionation mechanisms in nature as well as experiments.展开更多
基金国家自然科学基金项目(40773013)教育部博士点新教师基金项目(20070491518)+2 种基金GPMR开放基金项目(GPMR0742)美国National Science Foundation(EAR-0838227)阿肯色州Arkansas Space Grant Consortium(SW19002)联合资助
基金financially supported by the National Natural Science Foundation of China (Grant No. 41729001)the National Science Foundation (Grant No. EAR-1747706)+2 种基金the European Research Council under the H2020 framework program/ERC grant agreement (Grant No. #637503-Pristine)the UnivEarthS Labex program at Sorbonne Paris Cité (Grant Nos. #ANR-10-LABX-0023 and #ANR-11-IDEX-0005-02)the ANR through a chaire d’excellence Sorbonne Paris Cité
文摘The Earth has grown from chaotically mixed small dusts and gases to its present highly differentiated layered structure over the past 4.567 billion years. This differentiation has led to the formation of the atmosphere, hydrosphere,biosphere, crust, mantle, and core. The timing and mechanism for the formation and evolution of these different layers are still subjects of intense debate. This review brings together recent advances in using non-traditional stable isotopes to constrain major events and processes leading to the formation and differentiation of the Earth, including the Moon-forming giant impact, crustmantle interactions, evolution of life, the rise of atmospheric oxygen, extreme paleoclimate changes, and cooling rate of magmas.
基金financially supported by National Natural Science Foundation of China(Grant Nos.41503011 40930425,41573007,41173026)973 Program(2014Cb440904)+1 种基金CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-20)the 12th Five-Year Plan project of State Key Laboratory of Ore-deposit Geochemistry,Chinese Academy of Sciences(SKLODG-ZY125-07)
文摘Cadmium(Cd) is a scarce, but not an extremely rare element in the Earth's crust(crustal average: 0.2 ppm Cd). Geochemically, Cd exhibits thiophile, lithophile, and volatile behavior in different geologic processes. Biologically, it is a nutrient-like element that is closely related to P and Zn and is toxic element to organisms. Presently, Cd isotopes have been successfully utilized to trace Cd sources and nutrient cycling in marine systems in addition to unearthing other geochemical processes. Using published studies and our recent work, this survey summarizes the chemical preparation and mass spectrometry of Cd isotopes. It also reviews Cd isotopic compositions and fractionation mechanisms in nature as well as experiments.