This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions.Thi...This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions.This method provides tighter solution ranges compared to the existing approximation interval methods.We consider trigonometric approximation polynomials of three types:both cosine and sine functions,the sine function,and the cosine function.Thus,special interval arithmetic for trigonometric function without overestimation can be used to obtain interval results.The interval method using trigonometric approximation polynomials with a cosine functional form exhibits better performance than the existing Taylor interval method and Chebyshev interval method.Finally,two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed method.展开更多
.A non-intrusive reduced order model(ROM)that combines a proper orthogonal decomposition(POD)and an artificial neural network(ANN)is primarily studied to investigate the applicability of the proposed ROM in recovering....A non-intrusive reduced order model(ROM)that combines a proper orthogonal decomposition(POD)and an artificial neural network(ANN)is primarily studied to investigate the applicability of the proposed ROM in recovering the solutions with shocks and strong gradients accurately and resolving fine-scale structures efficiently for hyperbolic conservation laws.Its accuracy is demonstrated by solving a high-dimensional parametrized ODE and the one-dimensional viscous Burgers’equation with a parameterized diffusion coefficient.The two-dimensional singlemode Rayleigh-Taylor instability(RTI),where the amplitude of the small perturbation and time are considered as free parameters,is also simulated.An adaptive sampling method in time during the linear regime of the RTI is designed to reduce the number of snapshots required for POD and the training of ANN.The extensive numerical results show that the ROM can achieve an acceptable accuracy with improved efficiency in comparison with the standard full order method.展开更多
文摘This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions.This method provides tighter solution ranges compared to the existing approximation interval methods.We consider trigonometric approximation polynomials of three types:both cosine and sine functions,the sine function,and the cosine function.Thus,special interval arithmetic for trigonometric function without overestimation can be used to obtain interval results.The interval method using trigonometric approximation polynomials with a cosine functional form exhibits better performance than the existing Taylor interval method and Chebyshev interval method.Finally,two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed method.
基金funding support of this research by the National Natural Science Foundation of China(11871443)Shandong Provincial Qingchuang Science and Technology Project(2019KJI002)the Ocean University of China for providing the startup funding(201712011)that is used in supporting this work.
文摘.A non-intrusive reduced order model(ROM)that combines a proper orthogonal decomposition(POD)and an artificial neural network(ANN)is primarily studied to investigate the applicability of the proposed ROM in recovering the solutions with shocks and strong gradients accurately and resolving fine-scale structures efficiently for hyperbolic conservation laws.Its accuracy is demonstrated by solving a high-dimensional parametrized ODE and the one-dimensional viscous Burgers’equation with a parameterized diffusion coefficient.The two-dimensional singlemode Rayleigh-Taylor instability(RTI),where the amplitude of the small perturbation and time are considered as free parameters,is also simulated.An adaptive sampling method in time during the linear regime of the RTI is designed to reduce the number of snapshots required for POD and the training of ANN.The extensive numerical results show that the ROM can achieve an acceptable accuracy with improved efficiency in comparison with the standard full order method.