This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthor...This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthorder WENO-JS(WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202–228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable.The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On nonuniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime,the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.展开更多
A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, ...A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method.展开更多
基金supported by the National Natural Science Foundation of China (Grant 11672160)the National Key Research and Development Program of China (Grant 2016YF A0401200)
文摘This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthorder WENO-JS(WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202–228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable.The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On nonuniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime,the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.
文摘A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method.