为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一...为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一种特殊情况。?-SVD降噪算法包含滤值因子,能够抑制以噪声贡献占主导的奇异值对降噪后信号的信息贡献量。?-SVD降噪算法涉及延迟时间、嵌入维数、降噪阶次、噪声功率和拉格朗日乘子等5个参数。讨论了?-SVD降噪算法的参数选择方法,并着重研究降噪阶次和拉格朗日乘子对降噪效果的影响。齿轮故障仿真信号和齿轮早期裂纹故障振动信号的试验结果表明,?-SVD降噪算法在降噪效果方面要优于传统的SVD降噪算法,可以在强背景噪声情况下更好地提取出齿轮的故障特征。展开更多
文摘为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一种特殊情况。?-SVD降噪算法包含滤值因子,能够抑制以噪声贡献占主导的奇异值对降噪后信号的信息贡献量。?-SVD降噪算法涉及延迟时间、嵌入维数、降噪阶次、噪声功率和拉格朗日乘子等5个参数。讨论了?-SVD降噪算法的参数选择方法,并着重研究降噪阶次和拉格朗日乘子对降噪效果的影响。齿轮故障仿真信号和齿轮早期裂纹故障振动信号的试验结果表明,?-SVD降噪算法在降噪效果方面要优于传统的SVD降噪算法,可以在强背景噪声情况下更好地提取出齿轮的故障特征。