A series of highly active Ni2P-Mo S2/γ-Al2O3 catalysts were prepared and characterized, the catalytic performance of which was evaluated through hydrodesulfurization of dibenzothiophene. The result indicated that whe...A series of highly active Ni2P-Mo S2/γ-Al2O3 catalysts were prepared and characterized, the catalytic performance of which was evaluated through hydrodesulfurization of dibenzothiophene. The result indicated that when the amount of Ni2 P was 4%, the catalyst showed a relatively high activity to provide a reliable reference for the hydrodesulfurization pathway in comparison with the conventional Ni Mo and Ni Mo P catalysts. The physicochemical properties of the catalysts were correlated with their catalytic activity and selectivity on hydrodesulfurization. The stacking number of active Mo S2 phases was important for influencing the hydrogenation activity.展开更多
Evolution of the morphology of MC carbides with the change of cooling rate and carbon content in two kinds of nickel-base superalloys, K417 G and DD33, has been investigated. The morphology of MC carbides evolves from...Evolution of the morphology of MC carbides with the change of cooling rate and carbon content in two kinds of nickel-base superalloys, K417 G and DD33, has been investigated. The morphology of MC carbides evolves from faceted to script-like with increasing cooling rate. Varying the carbon content from 40X10-6 to 320X10-6, the morphology of carbides changes from blocky, rod-like into script-like. Scanning electron microscopy observation of deep-etched samples indicates that these carbides evolve from octahedral to dendritic and then into welldeveloped dendrites accordingly in a three-dimensional manner. The morphology evolution is discussed from the viewpoint of the preferential growth orientation of fcc crystals and the carbide growth rate during directional solidification.展开更多
Three types of composite materials were designed and fabricated by hot pressing powder blends of alumina with 20 vol. pct nickel particles. The composites differ in the shape, size and distribution of the nickel parti...Three types of composite materials were designed and fabricated by hot pressing powder blends of alumina with 20 vol. pct nickel particles. The composites differ in the shape, size and distribution of the nickel particles. Composite microstructures are described and measurements of density, hardness, flexure strength, and fracture toughness are reported. The results showed that the fracture strength of the composite with dispersed nickel particles is higher than the other two composites (network microstructure and mixed microstructure) and the alumina matrix. For all the composites studied, tougher materials than the monolithic alumina were produced. The fracture toughness of the composite with a network microstructure is much higher than that of the other composites. The toughening mechanisms were described based on the observation of the fracture surfaces and the crack-particle interactions. Moreover, the parameters for microstructural tailoring of these materials have been deduced. The toughening of the produced composites was explained in light of the interracial bond strength.展开更多
Morphology-controlled synthesis and large-scale self-assembly of nanoscale building blocks into complex nanoarchitectures is still a great challenge in nanoscience. In this work, various porous NiO nanostructures are ...Morphology-controlled synthesis and large-scale self-assembly of nanoscale building blocks into complex nanoarchitectures is still a great challenge in nanoscience. In this work, various porous NiO nanostructures are obtained by a simple ammonia precipitation method and we find that the reaction temperature has a significant impact on their microstructures. Nanoflowers and nanoflakes have been obtained at 0 and50, while, weakly self-assembly nanoflowers with nanoflakes are formed at 20. In order to understand the process-structure-property relationship in nanomaterial synthesis and application, the as-prepared NiO is used as supercapacitor electrode materials, and evaluated by electrochemical measurement. The experimental results indicate that the material obtained at lower temperature has higher pseudocapacitance, the specific capacitance of 944, 889 and 410 F/g are reached for the materials prepared at 0, 20 and 50 and further calcined at 300, respectively. While the material obtained at higher temperature has excellent rate capacity. This offers us an opportunity searching for exciting new properties of NiO, and be useful for fabricating functional nanodevices.展开更多
The interaction of spinodal decomposition and recrystallization process, and the characteristic of recrystallization in Cu-Ni-Fe alloy aged at different temperatures after solution-treatment and cold rolling have been...The interaction of spinodal decomposition and recrystallization process, and the characteristic of recrystallization in Cu-Ni-Fe alloy aged at different temperatures after solution-treatment and cold rolling have been studied by structural analysis and Vickers hardness test. It has shown that the recrystallization of spinodal Cu -Ni-Fe alloy might be divided into 2 types: spinodal decomposition, recovery and recrystallization of two-phase microstructure take place in the deformed alloy aged below the spinodal temperature; while recrystallization of single-phase microstructure and growth of fully-recrystallized grains take place in the deformed alloy aged above the spinodal temperature. The deformed alloy aged below the spinodal temperature recrystallizes in cellular morphology.展开更多
基金financially supported by the Natural Science Foundation of Anhui Province(No.1408085QB44)the Natural Science Foundation of Educational Committee of Anhui Province(No.KJ2013B243)the Youth Foundation of Huaibei Normal University(2013xqz01)
文摘A series of highly active Ni2P-Mo S2/γ-Al2O3 catalysts were prepared and characterized, the catalytic performance of which was evaluated through hydrodesulfurization of dibenzothiophene. The result indicated that when the amount of Ni2 P was 4%, the catalyst showed a relatively high activity to provide a reliable reference for the hydrodesulfurization pathway in comparison with the conventional Ni Mo and Ni Mo P catalysts. The physicochemical properties of the catalysts were correlated with their catalytic activity and selectivity on hydrodesulfurization. The stacking number of active Mo S2 phases was important for influencing the hydrogenation activity.
基金supported by the National Basic Research Program of China (Grant No. 2010CB631201)the National Natural Science Foundation of China (Grant No. 51201164)
文摘Evolution of the morphology of MC carbides with the change of cooling rate and carbon content in two kinds of nickel-base superalloys, K417 G and DD33, has been investigated. The morphology of MC carbides evolves from faceted to script-like with increasing cooling rate. Varying the carbon content from 40X10-6 to 320X10-6, the morphology of carbides changes from blocky, rod-like into script-like. Scanning electron microscopy observation of deep-etched samples indicates that these carbides evolve from octahedral to dendritic and then into welldeveloped dendrites accordingly in a three-dimensional manner. The morphology evolution is discussed from the viewpoint of the preferential growth orientation of fcc crystals and the carbide growth rate during directional solidification.
文摘Three types of composite materials were designed and fabricated by hot pressing powder blends of alumina with 20 vol. pct nickel particles. The composites differ in the shape, size and distribution of the nickel particles. Composite microstructures are described and measurements of density, hardness, flexure strength, and fracture toughness are reported. The results showed that the fracture strength of the composite with dispersed nickel particles is higher than the other two composites (network microstructure and mixed microstructure) and the alumina matrix. For all the composites studied, tougher materials than the monolithic alumina were produced. The fracture toughness of the composite with a network microstructure is much higher than that of the other composites. The toughening mechanisms were described based on the observation of the fracture surfaces and the crack-particle interactions. Moreover, the parameters for microstructural tailoring of these materials have been deduced. The toughening of the produced composites was explained in light of the interracial bond strength.
基金financially supported by the National Natural Science Foundation of China (21063014 and 21163021)Fundamental Research Funds for the Central Universities (XDJK2013B031)the Natural Science Foundation of Chongqing (cstc2013jcyj A0396)
文摘Morphology-controlled synthesis and large-scale self-assembly of nanoscale building blocks into complex nanoarchitectures is still a great challenge in nanoscience. In this work, various porous NiO nanostructures are obtained by a simple ammonia precipitation method and we find that the reaction temperature has a significant impact on their microstructures. Nanoflowers and nanoflakes have been obtained at 0 and50, while, weakly self-assembly nanoflowers with nanoflakes are formed at 20. In order to understand the process-structure-property relationship in nanomaterial synthesis and application, the as-prepared NiO is used as supercapacitor electrode materials, and evaluated by electrochemical measurement. The experimental results indicate that the material obtained at lower temperature has higher pseudocapacitance, the specific capacitance of 944, 889 and 410 F/g are reached for the materials prepared at 0, 20 and 50 and further calcined at 300, respectively. While the material obtained at higher temperature has excellent rate capacity. This offers us an opportunity searching for exciting new properties of NiO, and be useful for fabricating functional nanodevices.
文摘The interaction of spinodal decomposition and recrystallization process, and the characteristic of recrystallization in Cu-Ni-Fe alloy aged at different temperatures after solution-treatment and cold rolling have been studied by structural analysis and Vickers hardness test. It has shown that the recrystallization of spinodal Cu -Ni-Fe alloy might be divided into 2 types: spinodal decomposition, recovery and recrystallization of two-phase microstructure take place in the deformed alloy aged below the spinodal temperature; while recrystallization of single-phase microstructure and growth of fully-recrystallized grains take place in the deformed alloy aged above the spinodal temperature. The deformed alloy aged below the spinodal temperature recrystallizes in cellular morphology.