期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于混沌粒子群优化的倒数熵阈值选取方法 被引量:10
1
作者 吴一全 占必超 《信号处理》 CSCD 北大核心 2010年第7期1044-1049,共6页
基于信息熵的方法是一类重要的阈值选取方法,但现有的最大熵方法存在无定义值问题。为此,提出了基于倒数熵的阈值选取方法。首先给出了倒数熵的定义及一维阈值选取方法,导出了基于二维直方图区域直分及区域斜分的倒数熵阈值选取算法公式... 基于信息熵的方法是一类重要的阈值选取方法,但现有的最大熵方法存在无定义值问题。为此,提出了基于倒数熵的阈值选取方法。首先给出了倒数熵的定义及一维阈值选取方法,导出了基于二维直方图区域直分及区域斜分的倒数熵阈值选取算法公式;然后考虑到二维倒数熵分割运算量较大,提出利用混沌小生境粒子群算法来寻找最优阈值,避免了算法早熟,提高了搜索精度和算法效率。实验结果表明:二维倒数熵阈值选取的斜分方法在抗噪性和运算时间上优于直分方法;而与基于粒子群优化的二维最大熵方法相比,本文提出的基于混沌小生境粒子群优化的二维倒数熵斜分法在运行时间上降低了约40%,分割效果更佳。 展开更多
关键词 图像分割 阈值选取 倒数熵 区域斜分 混沌小生境粒子群优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部