Early Permian mafic-ultramafic complexes in eastern Xinjiang (新疆) are mainly distributed in the Beishan (北山) area, Mid-Tianshan (天山) massif and Jueluotage (觉罗塔塔) belt. Systematic compositional mappin...Early Permian mafic-ultramafic complexes in eastern Xinjiang (新疆) are mainly distributed in the Beishan (北山) area, Mid-Tianshan (天山) massif and Jueluotage (觉罗塔塔) belt. Systematic compositional mapping of olivines from these Early Permian mafic-ultramafic complexes demonstrates that an apparently spatial distribution and heterogeneous partial melting in the mantle source exists from the Beishan area, across the Mid-Tianshan massif, to the Jueluotage belt from the south to the north. This is probably consistent with the spatial evolutional differences and tectonic features of these three belts. The decreasing degree of partial melting, as revealed by decreasing Fo contents of olivines, from south to north and from east to west reflects the southward subduction of the Paleo-Asian Ocean and the south location of the indistinct mantle plume in the Permian. Simultan ously, NiO and Fo-mapping in olivine also indicates that sulfide segregation before olivine crystallization played an important role in Ni-Cu mineralization in the mafic-ultramafic complexes. Olivines with the compositional range of Fo (77-86) and NiO (less than 0.22 wt.%) are more favorable for Ni-Cu sulfide mineralization.展开更多
The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small u...The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small ultramafic bodies intruding Proterozoic metamorphic rocks. Complexes at Shitoukengde contain all kinds of mafic-ultramafic rocks, and olivine websterite and pyroxene peridotite are the most important Ni-Cu-hosted rocks. Zircon U-Pb dating suggests that the Shitoukengde Ni-Cu deposit formed in late Silurian (426-422 Ma), and their zircons have ~Hf(t) values of-9.4 to 5.9 with the older TDMm ages (0.80-1.42 Ga). Mafic-ultramafic rocks from the No. I complex show the similar rare earth and trace element patterns, which are enriched in light rare earth elements and large ion iithophile elements (e.g., K, Rb, Th) and depleted in heavy rare earth elements and high field strength elements (e.g., Ta, Nb, Zr, Ti). Sulfides from the deposit have the slightly higher ~34S values of 1.9-4.3%o than the mantle (0 ~ 2%o). The major and trace element characteristics, and Sr-Nd-Pb and Hf, S isotopes indicate that their parental magmas originated from a metasomatised, asthenospheric mantle source which had previously been modified by subduction-related fluids, and experienced significant crustal contamination both in the magma chamber and during ascent triggering S oversaturation by addition of S and Si, that resulted in the deposition and enrichment of sulfides. Combined with the tectonic evolution, we suggest that the Shitoukengde Ni-Cu deposit formed in the post-collisional, extensional regime related to the subducted oceanic slab break-off after the Wanbaogou oceanic basalt plateau collaged northward to the Qaidam Block in late Silurian.展开更多
The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposi...The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposits; (2) fractional crystallization and crustal contamination, particularly the input of sulfur from crustal rocks, resulting in sulfide immiscibility and segregation; and (3) the timing of sulfide concentration in the intrusion. The super-large magmatic Ni-Cu sulfide deposits around the world have been found in small mafic-ultramafic intrusions, except for the Sudbury deposit. Studies in the past decade indicated that the intrusions hosting large and super-large magmatic sulfide deposits occur in magma conduits, such as those in China, including Jinchuan (Gansu), Yangliuping (Sichuan), Kalatongke (Xinjiang), and Hongqiling (Jilin). Magma conduits as open magma systems provide a perfect environment for extensive concentration of immiscible sulfide melts, which have been found to occur along deep regional faults. The origin of many mantle-derived magmas is closely associated with mantle plumes, intracontinental rifts, or post-collisional extension. Although it has been confirmed that sulfide immiscibility results from crustal contamination, grades of sulfide ores are also related to the nature of the parental magmas, the ratio between silicate magma and immiscible sulfide melt, the reaction between the sulfide melts and newly injected silicate magmas, and fractionation of the sulfide melt. The field relationships of the ore-bearing intrusion and the sulfide ore body are controlled by the geological features of the wall rocks. In this paper, we attempt to demonstrate the general characteristics, formation mechanism,tectonic settings, and indicators of magmatic sulfide deposits occurring in magmatic conduits which would provide guidelines for further exploration.展开更多
The leaching of low-sulfur Ni-Cu matte in acid-oxygen(CuSO4-H2SO4-O2)solution at atmospheric pressure was researched.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni...The leaching of low-sulfur Ni-Cu matte in acid-oxygen(CuSO4-H2SO4-O2)solution at atmospheric pressure was researched.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.The effects of temperature,agitation speed,oxygen flow rate,particle size,acid concentration and concentration of copper ion were studied.It is found that the matte particles are leached by shrinking core mechanism and the leaching process is electrochemically controlled.In a temperature range of 30-60℃,the surface reaction is rate-limiting step,with an apparent activation energy of 41.9 kJ/mol.But at higher temperature(70-85℃),the rate process is controlled by diffusion through the product layer,with an apparent activation energy of 7.3 kJ/mol.展开更多
在氧化铝表面,以葡萄糖为炭源,通过高温热解方法制备了覆炭氧化铝载体(CCA),利用浸渍法制备Ni-Cu/CCA催化剂,并对催化剂进行了IR、BET、TG、SEM表征。利用微型连续管式反应器与气相色谱联用装置,考察了Ni-Cu/CCA催化剂对甲基环己烷(MCH...在氧化铝表面,以葡萄糖为炭源,通过高温热解方法制备了覆炭氧化铝载体(CCA),利用浸渍法制备Ni-Cu/CCA催化剂,并对催化剂进行了IR、BET、TG、SEM表征。利用微型连续管式反应器与气相色谱联用装置,考察了Ni-Cu/CCA催化剂对甲基环己烷(MCH)气相脱氢的催化性能。结果表明,载体覆炭质量分数为10%,金属活性组分Ni、Cu质量比为10∶1,反应温度为650 K,甲基环己烷微量进料为0.015 m L/min,载气流速为8 m L/min,反应压力为0.4 MPa时,使用0.6 g Ni-Cu/CCA,甲基环己烷脱氢转化率达到95.27%,甲苯的选择性接近100%。展开更多
A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu a...A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.Firstly,the acid-oxygen(CuSO4-H2SO4-O2)leaching of the matte was conducted at atmospheric pressure.When the solution pH value reached 1.0-2.0,the oxygen flow was ceased.Then,the aqueous copper was rejected by cementation reaction with Ni in the alloy.The mineralogical characteristics of the matte in the process were analyzed by X-ray diffractometry,optical microscopy and scanning electron microscopy.And the effects of variations in temperature,particle size distribution,oxygen flow rate,pulp density,initial acid concentration and initial concentration of copper ion were investigated.展开更多
Electrocatalytic CO_(2) reduction to CH_(4) remains challenging due to multi-electron transfer and intermediates adsorption.Herein,we synthesized electrocatalysts by growing Ni-Cu alloy structure on nitrogen-doped car...Electrocatalytic CO_(2) reduction to CH_(4) remains challenging due to multi-electron transfer and intermediates adsorption.Herein,we synthesized electrocatalysts by growing Ni-Cu alloy structure on nitrogen-doped carbon nanotubes(NixCuy-NCNT)for electrocatalytic CO_(2) reduction reaction(CO_(2)RR)via hydrothermal method followed by pyrolysis.The optimized Ni_(1)Cu_(1)-NCNT demonstrated a superior CO_(2)RR performance,achieving 99.7%FECH_(4)(FE=Faradaic efficiency)and 11.54 mA·cm^(−2) current density at−1.2 V vs.reversible hydrogen electrode(RHE),which outperformed single metal counterparts.Its outstanding performance was due to the electrons transferred from Cu to Ni and Ni-Cu alloy shifted the d-band center toward the Fermi level,which was more conducive to the intermediate formation.In situ electrochemical attenuated total reflection(EC-ATR)and density functional theory(DFT)calculations revealed the appearance of *CHO intermediate and the pathway during the CO_(2)RR process.The design of the bimetallic electrocatalyst in this study provides a new perspective for the highly selective reduction of CO_(2).展开更多
The Ni-Cu bimetallic nanoparticles were successfully anchorred on the surface of g-C3N4 nanosheets by a simple heat treatment process which was applied to the photocatalytic hydrogen evolution reaction.Insitu introduc...The Ni-Cu bimetallic nanoparticles were successfully anchorred on the surface of g-C3N4 nanosheets by a simple heat treatment process which was applied to the photocatalytic hydrogen evolution reaction.Insitu introduction of Ni-Cu could significantly improve the photocatalytic hydrogen evolution performance compared with pure g-C3N4 in the system sensitized by eosin Y under a visible irradiation condition.The hydrogen production activity of the composite reached 104.4μmol(2088.28μmol g^-1 h^-1)after using the Ni Cu double promoter strategy,which was 24.3 times higher than g-C3N4.The excellent electrical conductivity of the bimetallic Ni-Cu and the close interfacial contact between Ni Cu and g-C3N4 played an important role for increasing the charge transfer rate.They were also the reasons of more efficient charge separation,which ultimately led to a significant promotion on the photocatalytic hydrogen production reaction.Ni-Cu/g-C3N4 coupling with a close Schottky interface between metal and semiconductor which enhanced H2-evolution performance and TEOA oxidation kinetics.This work provided a new way to load Ni Cu bimetallic nanoparticles in situ onto g-C3N4 and a reference on relative semiconductor materials.展开更多
Rapid solidification of undercooled Ni-15%Cu (mole fraction) alloy was studied using glass fluxing and cyclic superheating. To show the effect of cooling history on the microstrucyure and microtexture evolution, the...Rapid solidification of undercooled Ni-15%Cu (mole fraction) alloy was studied using glass fluxing and cyclic superheating. To show the effect of cooling history on the microstrucyure and microtexture evolution, the as-solidified samples were either cooled naturally or quenched into water after recalescence. At low undercooling, grain-refined microstructure has a random texture and a highly oriented texture without annealing twins for the case of naturally cooling and quenching, respectively. At high undercooling, a fully random texture as well as a number of annealing twins are observed, and recrystallization and grain growth independently happen on the cooling history. Fluid flow and recrystallization play an important role in the microtexture formation for grain refinement at both low and high undercooling.展开更多
The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion c...The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.展开更多
In order to analyze the flow behavior and workability of Ni-42Cu in cast and wrought conditions, hot deformation tests were performed at temperatures and strain rates within the ranges of 900-1150 ℃ and 0.001-1 s^-1,...In order to analyze the flow behavior and workability of Ni-42Cu in cast and wrought conditions, hot deformation tests were performed at temperatures and strain rates within the ranges of 900-1150 ℃ and 0.001-1 s^-1, respectively. Tensile tests showed a “hot ductility trough” at 950 ℃ for both alloys. The drop in hot ductility was more considerable in the cast alloy because of the sluggish dynamic recrystallization. The hot ductility drop and grain boundary cracking, particularly in the cast alloy, were attributed to the segregation of detrimental atoms to the boundaries. It was shown that the hot ductility of the wrought alloy could be improved with increasing strain rate. It was associated with increasing the fraction of dynamic recrystallization at higher strain rates. This finding corroborated the change in the mechanism of dynamic recrystallization with strain rate. The strain rate sensitivity and instability parameters calculated for the wrought alloy showed that the material is prone to strain localization at low temperatures, i.e., 950-1050 ℃, and high strain rates of 0.1 and 1 s-1. Based on the tensile and compression tests, the best temperature range for a desirable hot workability was introduced as 1050-1150 ℃.展开更多
The solidification microstructures of undercooled Ni90Cu10 alloys under different undercoolings were studied systematically by means of melt coating and cyclic superheating.In the obtained undercooling range,the solid...The solidification microstructures of undercooled Ni90Cu10 alloys under different undercoolings were studied systematically by means of melt coating and cyclic superheating.In the obtained undercooling range,the solidification structures of the two undercooled alloys have similar transformation processes,and there are two kinds of grain refinement structures under the conditions of low undercooling and high undercooling,respectively.The microstructures of the two grain refinement processes were analyzed in more detail by electronic backscattering diffraction technique.Under the condition of small undercooling,dendrite remelting is considered to be the main reason of grain refinement.However,under the condition of high undercooling,the existence of annealing twins and obvious migration of grain boundary are important evidences for the occurrence of recrystallization process.展开更多
Departing from the volume-averaging method,an overall solidification kinetic model for undercooled single-phase solid-solution alloys was developed to study the effect of back diffusion on the solidification kinetics....Departing from the volume-averaging method,an overall solidification kinetic model for undercooled single-phase solid-solution alloys was developed to study the effect of back diffusion on the solidification kinetics.Application to rapid solidification of undercooled Ni-15%Cu(mole fraction) alloy shows that back diffusion effect has significant influence on the solidification ending temperature but possesses almost no effect on the volume fraction solidified during recalescence.Inconsistent with the widely accepted viewpoint of Herlach,solidification ends at a temperature between the predictions of Lever rule and Scheil's equation,and the exact value is determined by the effect of back diffusion,the initial undercooling and the cooling rate.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41030424,41173011)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-107)the China Postdoctoral Science Foundation to Benxun Su
文摘Early Permian mafic-ultramafic complexes in eastern Xinjiang (新疆) are mainly distributed in the Beishan (北山) area, Mid-Tianshan (天山) massif and Jueluotage (觉罗塔塔) belt. Systematic compositional mapping of olivines from these Early Permian mafic-ultramafic complexes demonstrates that an apparently spatial distribution and heterogeneous partial melting in the mantle source exists from the Beishan area, across the Mid-Tianshan massif, to the Jueluotage belt from the south to the north. This is probably consistent with the spatial evolutional differences and tectonic features of these three belts. The decreasing degree of partial melting, as revealed by decreasing Fo contents of olivines, from south to north and from east to west reflects the southward subduction of the Paleo-Asian Ocean and the south location of the indistinct mantle plume in the Permian. Simultan ously, NiO and Fo-mapping in olivine also indicates that sulfide segregation before olivine crystallization played an important role in Ni-Cu mineralization in the mafic-ultramafic complexes. Olivines with the compositional range of Fo (77-86) and NiO (less than 0.22 wt.%) are more favorable for Ni-Cu sulfide mineralization.
基金financially supported by the National Natural Science Foundation of China(No.41272093)China geological survey project(No.12120114080901)
文摘The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic-ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small ultramafic bodies intruding Proterozoic metamorphic rocks. Complexes at Shitoukengde contain all kinds of mafic-ultramafic rocks, and olivine websterite and pyroxene peridotite are the most important Ni-Cu-hosted rocks. Zircon U-Pb dating suggests that the Shitoukengde Ni-Cu deposit formed in late Silurian (426-422 Ma), and their zircons have ~Hf(t) values of-9.4 to 5.9 with the older TDMm ages (0.80-1.42 Ga). Mafic-ultramafic rocks from the No. I complex show the similar rare earth and trace element patterns, which are enriched in light rare earth elements and large ion iithophile elements (e.g., K, Rb, Th) and depleted in heavy rare earth elements and high field strength elements (e.g., Ta, Nb, Zr, Ti). Sulfides from the deposit have the slightly higher ~34S values of 1.9-4.3%o than the mantle (0 ~ 2%o). The major and trace element characteristics, and Sr-Nd-Pb and Hf, S isotopes indicate that their parental magmas originated from a metasomatised, asthenospheric mantle source which had previously been modified by subduction-related fluids, and experienced significant crustal contamination both in the magma chamber and during ascent triggering S oversaturation by addition of S and Si, that resulted in the deposition and enrichment of sulfides. Combined with the tectonic evolution, we suggest that the Shitoukengde Ni-Cu deposit formed in the post-collisional, extensional regime related to the subducted oceanic slab break-off after the Wanbaogou oceanic basalt plateau collaged northward to the Qaidam Block in late Silurian.
基金supported by 973 Program(2007CB411408)National Natural Science Foundation of China(NSFC) projects (40730420 and 40973038)Chinese Academy of Sciences(KZCX2-YW-Q04)
文摘The three most crucial factors for the formation of large and super-large magmatic sulfide deposits are: (1) a large volume of mantle-derived mafic-ultramafic magmas that participated in the formation of the deposits; (2) fractional crystallization and crustal contamination, particularly the input of sulfur from crustal rocks, resulting in sulfide immiscibility and segregation; and (3) the timing of sulfide concentration in the intrusion. The super-large magmatic Ni-Cu sulfide deposits around the world have been found in small mafic-ultramafic intrusions, except for the Sudbury deposit. Studies in the past decade indicated that the intrusions hosting large and super-large magmatic sulfide deposits occur in magma conduits, such as those in China, including Jinchuan (Gansu), Yangliuping (Sichuan), Kalatongke (Xinjiang), and Hongqiling (Jilin). Magma conduits as open magma systems provide a perfect environment for extensive concentration of immiscible sulfide melts, which have been found to occur along deep regional faults. The origin of many mantle-derived magmas is closely associated with mantle plumes, intracontinental rifts, or post-collisional extension. Although it has been confirmed that sulfide immiscibility results from crustal contamination, grades of sulfide ores are also related to the nature of the parental magmas, the ratio between silicate magma and immiscible sulfide melt, the reaction between the sulfide melts and newly injected silicate magmas, and fractionation of the sulfide melt. The field relationships of the ore-bearing intrusion and the sulfide ore body are controlled by the geological features of the wall rocks. In this paper, we attempt to demonstrate the general characteristics, formation mechanism,tectonic settings, and indicators of magmatic sulfide deposits occurring in magmatic conduits which would provide guidelines for further exploration.
基金Project(50774020) supported by the National Natural Science Foundation of China
文摘The leaching of low-sulfur Ni-Cu matte in acid-oxygen(CuSO4-H2SO4-O2)solution at atmospheric pressure was researched.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.The effects of temperature,agitation speed,oxygen flow rate,particle size,acid concentration and concentration of copper ion were studied.It is found that the matte particles are leached by shrinking core mechanism and the leaching process is electrochemically controlled.In a temperature range of 30-60℃,the surface reaction is rate-limiting step,with an apparent activation energy of 41.9 kJ/mol.But at higher temperature(70-85℃),the rate process is controlled by diffusion through the product layer,with an apparent activation energy of 7.3 kJ/mol.
文摘在氧化铝表面,以葡萄糖为炭源,通过高温热解方法制备了覆炭氧化铝载体(CCA),利用浸渍法制备Ni-Cu/CCA催化剂,并对催化剂进行了IR、BET、TG、SEM表征。利用微型连续管式反应器与气相色谱联用装置,考察了Ni-Cu/CCA催化剂对甲基环己烷(MCH)气相脱氢的催化性能。结果表明,载体覆炭质量分数为10%,金属活性组分Ni、Cu质量比为10∶1,反应温度为650 K,甲基环己烷微量进料为0.015 m L/min,载气流速为8 m L/min,反应压力为0.4 MPa时,使用0.6 g Ni-Cu/CCA,甲基环己烷脱氢转化率达到95.27%,甲苯的选择性接近100%。
基金Project(50774020)supported by the National Natural Science Foundation of China
文摘A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.Firstly,the acid-oxygen(CuSO4-H2SO4-O2)leaching of the matte was conducted at atmospheric pressure.When the solution pH value reached 1.0-2.0,the oxygen flow was ceased.Then,the aqueous copper was rejected by cementation reaction with Ni in the alloy.The mineralogical characteristics of the matte in the process were analyzed by X-ray diffractometry,optical microscopy and scanning electron microscopy.And the effects of variations in temperature,particle size distribution,oxygen flow rate,pulp density,initial acid concentration and initial concentration of copper ion were investigated.
基金supported by the National Natural Science Foundation of China(No.52170065).
文摘Electrocatalytic CO_(2) reduction to CH_(4) remains challenging due to multi-electron transfer and intermediates adsorption.Herein,we synthesized electrocatalysts by growing Ni-Cu alloy structure on nitrogen-doped carbon nanotubes(NixCuy-NCNT)for electrocatalytic CO_(2) reduction reaction(CO_(2)RR)via hydrothermal method followed by pyrolysis.The optimized Ni_(1)Cu_(1)-NCNT demonstrated a superior CO_(2)RR performance,achieving 99.7%FECH_(4)(FE=Faradaic efficiency)and 11.54 mA·cm^(−2) current density at−1.2 V vs.reversible hydrogen electrode(RHE),which outperformed single metal counterparts.Its outstanding performance was due to the electrons transferred from Cu to Ni and Ni-Cu alloy shifted the d-band center toward the Fermi level,which was more conducive to the intermediate formation.In situ electrochemical attenuated total reflection(EC-ATR)and density functional theory(DFT)calculations revealed the appearance of *CHO intermediate and the pathway during the CO_(2)RR process.The design of the bimetallic electrocatalyst in this study provides a new perspective for the highly selective reduction of CO_(2).
基金financially supported by the Open Project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,Ningxia University(No.2019-KF-36)the Chinese National Natural Science Foundation(Nos.21862002 and 41663012)+2 种基金the new technology and system for clean energy catalytic productionMajor scientific project of North Minzu University(No.ZDZX201803)The Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project,North Minzu University。
文摘The Ni-Cu bimetallic nanoparticles were successfully anchorred on the surface of g-C3N4 nanosheets by a simple heat treatment process which was applied to the photocatalytic hydrogen evolution reaction.Insitu introduction of Ni-Cu could significantly improve the photocatalytic hydrogen evolution performance compared with pure g-C3N4 in the system sensitized by eosin Y under a visible irradiation condition.The hydrogen production activity of the composite reached 104.4μmol(2088.28μmol g^-1 h^-1)after using the Ni Cu double promoter strategy,which was 24.3 times higher than g-C3N4.The excellent electrical conductivity of the bimetallic Ni-Cu and the close interfacial contact between Ni Cu and g-C3N4 played an important role for increasing the charge transfer rate.They were also the reasons of more efficient charge separation,which ultimately led to a significant promotion on the photocatalytic hydrogen production reaction.Ni-Cu/g-C3N4 coupling with a close Schottky interface between metal and semiconductor which enhanced H2-evolution performance and TEOA oxidation kinetics.This work provided a new way to load Ni Cu bimetallic nanoparticles in situ onto g-C3N4 and a reference on relative semiconductor materials.
基金Project(2011CB610403)supported by the National Basic Research Program of ChinaProject(51125002)supported by the National Natural Science Fund for Distinguished Young Scholars of China+3 种基金Projects(51101122,51071127,50901059)supported by the National Natural Science Foundation of ChinaProject(1110502)supported by the Fok Ying Tong Education Foundation,ChinaProjects(66-QP-2010,24-TZ-2009)supported by the Free Research Fund of State Key Laboratory of Solidification Processing,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘Rapid solidification of undercooled Ni-15%Cu (mole fraction) alloy was studied using glass fluxing and cyclic superheating. To show the effect of cooling history on the microstrucyure and microtexture evolution, the as-solidified samples were either cooled naturally or quenched into water after recalescence. At low undercooling, grain-refined microstructure has a random texture and a highly oriented texture without annealing twins for the case of naturally cooling and quenching, respectively. At high undercooling, a fully random texture as well as a number of annealing twins are observed, and recrystallization and grain growth independently happen on the cooling history. Fluid flow and recrystallization play an important role in the microtexture formation for grain refinement at both low and high undercooling.
基金Project(2011CB012803) supported by the National Basic Research Program of ChinaProject(NCET-10-0278) supported by Program for New Century Excellent Talents in University,China
文摘The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.
文摘In order to analyze the flow behavior and workability of Ni-42Cu in cast and wrought conditions, hot deformation tests were performed at temperatures and strain rates within the ranges of 900-1150 ℃ and 0.001-1 s^-1, respectively. Tensile tests showed a “hot ductility trough” at 950 ℃ for both alloys. The drop in hot ductility was more considerable in the cast alloy because of the sluggish dynamic recrystallization. The hot ductility drop and grain boundary cracking, particularly in the cast alloy, were attributed to the segregation of detrimental atoms to the boundaries. It was shown that the hot ductility of the wrought alloy could be improved with increasing strain rate. It was associated with increasing the fraction of dynamic recrystallization at higher strain rates. This finding corroborated the change in the mechanism of dynamic recrystallization with strain rate. The strain rate sensitivity and instability parameters calculated for the wrought alloy showed that the material is prone to strain localization at low temperatures, i.e., 950-1050 ℃, and high strain rates of 0.1 and 1 s-1. Based on the tensile and compression tests, the best temperature range for a desirable hot workability was introduced as 1050-1150 ℃.
基金Funded by the Basic Applied Research Projects in Shanxi Province(No.201801D221151)the Key R&D and Promotion Projects in Henan Province(No.212102210267)。
文摘The solidification microstructures of undercooled Ni90Cu10 alloys under different undercoolings were studied systematically by means of melt coating and cyclic superheating.In the obtained undercooling range,the solidification structures of the two undercooled alloys have similar transformation processes,and there are two kinds of grain refinement structures under the conditions of low undercooling and high undercooling,respectively.The microstructures of the two grain refinement processes were analyzed in more detail by electronic backscattering diffraction technique.Under the condition of small undercooling,dendrite remelting is considered to be the main reason of grain refinement.However,under the condition of high undercooling,the existence of annealing twins and obvious migration of grain boundary are important evidences for the occurrence of recrystallization process.
基金Project(2011CB610403) supported by the National Basic Research Program of ChinaProject(51125002) supported by the National Science Fund for Distinguished Young Scholars of China+4 种基金Projects(51101122,51071127,50901059) supported by the National Natural Science Foundation of ChinaProject(111502) supported by the Huo Yingdong Young Teacher Fund,ChinaProjects(66-QP-2010, 24-TZ-2009) supported by the Free Research Fund of State Key Laboratory of Solidification Processing,ChinaProjects(JC201008, JC200801) supported by the Fundamental Research Fund of Northwestern Polytechnical University,ChinaProject(B08040) supported by the Program of Introducing Talents of Discipline to Universities,China
文摘Departing from the volume-averaging method,an overall solidification kinetic model for undercooled single-phase solid-solution alloys was developed to study the effect of back diffusion on the solidification kinetics.Application to rapid solidification of undercooled Ni-15%Cu(mole fraction) alloy shows that back diffusion effect has significant influence on the solidification ending temperature but possesses almost no effect on the volume fraction solidified during recalescence.Inconsistent with the widely accepted viewpoint of Herlach,solidification ends at a temperature between the predictions of Lever rule and Scheil's equation,and the exact value is determined by the effect of back diffusion,the initial undercooling and the cooling rate.