Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolatio...Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.展开更多
In 1673, Yoshimasu Murase made a cubic equation to obtain the thickness of a hearth. He introduced two kinds of recurrence formulas of square and the deformation (Ref.[1]). We find that the three formulas lead to the ...In 1673, Yoshimasu Murase made a cubic equation to obtain the thickness of a hearth. He introduced two kinds of recurrence formulas of square and the deformation (Ref.[1]). We find that the three formulas lead to the extension of Newton-Raphson’s method and Horner’s method at the same time. This shows originality of Japanese native mathematics (Wasan) in the Edo era (1600- 1867). Suzuki (Ref.[2]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 1 introduces Murase’s three solutions of the cubic equation of the hearth. Section 2 explains the Horner’s method. We give the generalization of three formulas and the relation between these formulas and Horner’s method. Section 3 gives definitions of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), general recurrence formula of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), and general recurrence formula of the extension of Murase-Newton’s method (the extension of Tsuchikura-Horiguchi’s method) concerning n-degree polynomial equation. Section 4 is contents of the title of this paper.展开更多
This paper gives the extension of Newton’s method, and a variety of formulas to compare the convergences for the extension of Newton’s method (Section 4). Section 5 gives the numerical calculations. Section 1 introd...This paper gives the extension of Newton’s method, and a variety of formulas to compare the convergences for the extension of Newton’s method (Section 4). Section 5 gives the numerical calculations. Section 1 introduces the three formulas obtained from the cubic equation of a hearth by Murase (Ref. [1]). We find that Murase’s three formulas lead to a Horner’s method (Ref. [2]) and extension of a Newton’s method (2009) at the same time. This shows originality of Wasan (mathematics developed in Japan) in the Edo era (1603-1868). Suzuki (Ref. [3]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 2 gives the relations between Newton’s method, Horner’s method and Murase’s three formulas. Section 3 gives a new function defined such as .展开更多
The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s met...The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s method we give definition of function by variable transformation in Section 1. In Section 4 we do the numerical calculations of Halley’s method and extended one for elementary functions, compare these convergences, and confirm the theory. Under certain conditions we can confirm that the extended Halley’s method has better convergence or better approximation than Halley’s method.展开更多
In this paper,a necessary and sufficient condition for the existence of a kind of bivariate vector valued rational interpolants over rectangular grids is given.This criterion is an algebraic method,i.e.,by solving a s...In this paper,a necessary and sufficient condition for the existence of a kind of bivariate vector valued rational interpolants over rectangular grids is given.This criterion is an algebraic method,i.e.,by solving a system of equations based on the given data,we can directly test whether the relevant interpolant exists or not.By coming up with our method, the problem of how to deal with scalar equations and vector equations in the same system of equations is solved.After testing existence,an expression of the corresponding bivariate vector-valued rational interpolant can be constructed consequently.In addition,the way to get the expression is different from the one by making use of Thiele-type bivariate branched vector-valued continued fractions and Samelson inverse which are commonly used to construct the bivariate vector-valued rational interpolants.Compared with the Thiele-type method,the one given in this paper is more direct.Finally,some numerical examples are given to illustrate the result.展开更多
基金the National Nutural Science Foundation of China(Grant Nos.10771198,10590353)
文摘Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
文摘In 1673, Yoshimasu Murase made a cubic equation to obtain the thickness of a hearth. He introduced two kinds of recurrence formulas of square and the deformation (Ref.[1]). We find that the three formulas lead to the extension of Newton-Raphson’s method and Horner’s method at the same time. This shows originality of Japanese native mathematics (Wasan) in the Edo era (1600- 1867). Suzuki (Ref.[2]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 1 introduces Murase’s three solutions of the cubic equation of the hearth. Section 2 explains the Horner’s method. We give the generalization of three formulas and the relation between these formulas and Horner’s method. Section 3 gives definitions of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), general recurrence formula of Murase-Newton’s method (Tsuchikura-Horiguchi’s method), and general recurrence formula of the extension of Murase-Newton’s method (the extension of Tsuchikura-Horiguchi’s method) concerning n-degree polynomial equation. Section 4 is contents of the title of this paper.
文摘This paper gives the extension of Newton’s method, and a variety of formulas to compare the convergences for the extension of Newton’s method (Section 4). Section 5 gives the numerical calculations. Section 1 introduces the three formulas obtained from the cubic equation of a hearth by Murase (Ref. [1]). We find that Murase’s three formulas lead to a Horner’s method (Ref. [2]) and extension of a Newton’s method (2009) at the same time. This shows originality of Wasan (mathematics developed in Japan) in the Edo era (1603-1868). Suzuki (Ref. [3]) estimates Murase to be a rare mathematician in not only the history of Wasan but also the history of mathematics in the world. Section 2 gives the relations between Newton’s method, Horner’s method and Murase’s three formulas. Section 3 gives a new function defined such as .
文摘The purpose of this paper is that we give an extension of Halley’s method (Section 2), and the formulas to compare the convergences of the Halley’s method and extended one (Section 3). For extension of Halley’s method we give definition of function by variable transformation in Section 1. In Section 4 we do the numerical calculations of Halley’s method and extended one for elementary functions, compare these convergences, and confirm the theory. Under certain conditions we can confirm that the extended Halley’s method has better convergence or better approximation than Halley’s method.
文摘文中用初等对称多项式来表示特殊对称多项式sk(x1,x2,…,xn)=sum xik from i=1 to n (k=0,1,2,…)方法得到了n元m阶方阵的k次方和sk=sum xik from i=1 to n (k=0,1,2,…)类似的公式,并对其的计算问题进行了研究,得出了一系列结论.
基金the National Natural Science Foundation of China (No. 60473114) the Natural Science Foundation of Auhui Province (No. 070416227)+2 种基金 the Natural Science Research Scheme of Education Department of Anhui Province (No. KJ2008B246) Colleges and Universities in Anhui Province Young Teachers Subsidy Scheme (No. 2008jq1110) the Science Research Foundation of Chaohu College (No. XLY-200705).
文摘In this paper,a necessary and sufficient condition for the existence of a kind of bivariate vector valued rational interpolants over rectangular grids is given.This criterion is an algebraic method,i.e.,by solving a system of equations based on the given data,we can directly test whether the relevant interpolant exists or not.By coming up with our method, the problem of how to deal with scalar equations and vector equations in the same system of equations is solved.After testing existence,an expression of the corresponding bivariate vector-valued rational interpolant can be constructed consequently.In addition,the way to get the expression is different from the one by making use of Thiele-type bivariate branched vector-valued continued fractions and Samelson inverse which are commonly used to construct the bivariate vector-valued rational interpolants.Compared with the Thiele-type method,the one given in this paper is more direct.Finally,some numerical examples are given to illustrate the result.