Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in bra...Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong(EX-HN1), Yintang(EX-HN3), Neiguan(PC6), Taixi(KI3), Fenglong(ST40), and Taichong(LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment.展开更多
Thirty-four patients with cerebral infarction and 18 patients with transient ischemic attack were examined by multi-slice spiral CT scan, CT perfusion imaging, and CT angiography within 6 hours after onset. By CT perf...Thirty-four patients with cerebral infarction and 18 patients with transient ischemic attack were examined by multi-slice spiral CT scan, CT perfusion imaging, and CT angiography within 6 hours after onset. By CT perfusion imaging, 29 cases in the cerebral infarction group and 10 cases in the transient ischemic attack group presented with abnormal blood flow perfusion, which corresponded to the clinical symptoms. By CT angiography, various degrees of vascular stenosis could be detected in 41 patients, including 33 in the cerebral infarction group and eight in the transient ischemic attack group. The incidence of intracranial artery stenosis was higher than that of extracranial artery stenosis. The intracranial artery stenosis was located predominantly in the middle cerebral artery and carotid artery siphon, while the extracranial artery stenosis occurred mainly in the bifurcation of the common carotid artery and the opening of the vertebral artery. There were 34 cases (83%) with convict vascular stenosis and perfusion abnormalities, and five cases (45%) with perfusion abnormalities but without convict vascular stenosis. The incidence of cerebral infarction in patients with National Institutes of Health Stroke Scale scores 〉 5 points during onset was significantly higher than that in patients with National Institutes of Health Stroke Scale scores 〈 5 points. These experimental findings indicate that the combined application of various CT imaging methods allows early diagnosis of acute ischemic cerebrovascular disease, which can comprehensively analyze the pathogenesis and severity of acute ischemic cerebrovascular disease at the morphological and functional levels.展开更多
As the worldwide population ages, the prevalence of Alzheimer's disease (AD) increases. However, the results of promising medications have been unsatisfactory. Chinese acupuncture has a long history of treating de...As the worldwide population ages, the prevalence of Alzheimer's disease (AD) increases. However, the results of promising medications have been unsatisfactory. Chinese acupuncture has a long history of treating dementia, but lack of evidence from well-designed randomized controlled trials that validate its efficacy and safety, as well as its lack of clear underlying mechanisms, contribute to its limited application in clinical practice. In recent years, brain imaging technologies, such as functional magnetic resonance imaging and positron emission tomography, have been used to assess brain responses to acupuncture in a dynamic, visual, and objective way. These techniques are frequently used to explore neurological mechanisms of responses to acupuncture in AD and provide neuroimaging evidence as well as starting points to elucidate the possible mechanisms. This review summarizes the existing brain imaging evidence that explains the effects of acupuncture for AD and analyzes brain responses to acupuncture at cognitive-related acupoints [Baihui (GV 20), Shenmen (HT 7), Zusanli (ST 36), Neiguan (PC 6), and Taixi (KI 3)] from perspectives of acupoint specificity and acupoint combinations. Key issues and directions to consider in future studies are also put forward. This review should deepen our understanding of how brain imaging studies can be used to explore the underlying mechanisms of acupuncture in AD.展开更多
Previous neuropathological studies regarding traumatic brain injury have primarily focused on changes in large structures, for example, the clinical prognosis after cerebral contusion, intrace- rebral hematoma, and ep...Previous neuropathological studies regarding traumatic brain injury have primarily focused on changes in large structures, for example, the clinical prognosis after cerebral contusion, intrace- rebral hematoma, and epidural and subdural hematoma. In fact, many smaller injuries can also lead to severe neurological disorders. For example, cerebral microbleeds result in the dysfunc- tion of adjacent neurons and the disassociation between cortex and subcortical structures. These tiny changes cannot be adequately visualized on CT or conventional MRI. In contrast, gradient echo sequence-based susceptibility-weighted imaging is very sensitive to blood metabolites and microbleeds, and can be used to evaluate traumatic cerebral microbleeds with high sensitivity and accuracy. Cerebral microbleed can be considered as an important imaging marker for dif- fuse axonal injury with potential relevance for prognosis. For this reason, based on experimental and clinical studies, this study reviews the role of imaging data showing traumatic cerebral microbleeds in the evaluation of cerebral neuronal injury and neurofunctional loss.展开更多
To investigate the feasibility and time window of early detection of Wallerian degeneration in the corticospinal tract after middle cerebral artery infarction, 23 patients were assessed using magnetic resonance diffus...To investigate the feasibility and time window of early detection of Wallerian degeneration in the corticospinal tract after middle cerebral artery infarction, 23 patients were assessed using magnetic resonance diffusion tensor imaging at 3.0T within 14 days after the infarction. The fractional anisotropy values of the affected corticospinal tract began to decrease at 3 days after onset and decreased in all cases at 7 days. The diffusion coefficient remained unchanged. Experimental findings indicate that diffusion tensor imaging can detect the changes associated with Wallerian degeneration of the corticospinal tract as early as 3 days after cerebral infarction.展开更多
With improvements in care of at-risk neonates, more and more children survive. This makes it increasingly important to assess, soon after birth, the prognosis of children with hypoxic-ischemic encephalopathy. Computed...With improvements in care of at-risk neonates, more and more children survive. This makes it increasingly important to assess, soon after birth, the prognosis of children with hypoxic-ischemic encephalopathy. Computed tomography, ultrasound, and conventional magnetic resonance imaging are helpful to diagnose brain injury, but cannot quantify white matter damage. In this study, ten full-term infants without brain injury and twenty-two full-term neonates with hypoxic-ischemic encephalopathy (14 moderate cases and 8 severe cases) underwent diffusion tensor imaging to assess its feasibility in evaluating white matter damage in this condition. Results demonstrated that fractional anisotropy, voxel volume, and number of fiber bundles were different in some brain areas between infants with brain injury and those without brain injury. The correlation between fractional anisotropy values and neonatal behavioral neurological assessment scores was closest in the posterior limbs of the internal capsule. We conclude that diffusion tensor imaging can quantify white matter injury in neonates with hypoxic-ischemic encephalopathy.展开更多
基金supported by the National Natural Science Foundation of China,No.81173354a grant from the Science and Technology Plan Project of Guangdong Province of China,No.2013B021800099a grant from the Science and Technology Plan Project of Shenzhen City of China,No.JCYJ20150402152005642
文摘Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong(EX-HN1), Yintang(EX-HN3), Neiguan(PC6), Taixi(KI3), Fenglong(ST40), and Taichong(LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment.
基金supported by the Youth Fund of the First Clinical College of Liaoning Medical University, No. 2010C20
文摘Thirty-four patients with cerebral infarction and 18 patients with transient ischemic attack were examined by multi-slice spiral CT scan, CT perfusion imaging, and CT angiography within 6 hours after onset. By CT perfusion imaging, 29 cases in the cerebral infarction group and 10 cases in the transient ischemic attack group presented with abnormal blood flow perfusion, which corresponded to the clinical symptoms. By CT angiography, various degrees of vascular stenosis could be detected in 41 patients, including 33 in the cerebral infarction group and eight in the transient ischemic attack group. The incidence of intracranial artery stenosis was higher than that of extracranial artery stenosis. The intracranial artery stenosis was located predominantly in the middle cerebral artery and carotid artery siphon, while the extracranial artery stenosis occurred mainly in the bifurcation of the common carotid artery and the opening of the vertebral artery. There were 34 cases (83%) with convict vascular stenosis and perfusion abnormalities, and five cases (45%) with perfusion abnormalities but without convict vascular stenosis. The incidence of cerebral infarction in patients with National Institutes of Health Stroke Scale scores 〉 5 points during onset was significantly higher than that in patients with National Institutes of Health Stroke Scale scores 〈 5 points. These experimental findings indicate that the combined application of various CT imaging methods allows early diagnosis of acute ischemic cerebrovascular disease, which can comprehensively analyze the pathogenesis and severity of acute ischemic cerebrovascular disease at the morphological and functional levels.
基金Supported by National Natural Science Foundation of China(No.81373741)Chinese Medicine and Integrated Medicine Research Projects(2017,No.20) funded by Health and Family Planning Commission of Hubei Province(No.24)Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion(2014,No.8)
文摘As the worldwide population ages, the prevalence of Alzheimer's disease (AD) increases. However, the results of promising medications have been unsatisfactory. Chinese acupuncture has a long history of treating dementia, but lack of evidence from well-designed randomized controlled trials that validate its efficacy and safety, as well as its lack of clear underlying mechanisms, contribute to its limited application in clinical practice. In recent years, brain imaging technologies, such as functional magnetic resonance imaging and positron emission tomography, have been used to assess brain responses to acupuncture in a dynamic, visual, and objective way. These techniques are frequently used to explore neurological mechanisms of responses to acupuncture in AD and provide neuroimaging evidence as well as starting points to elucidate the possible mechanisms. This review summarizes the existing brain imaging evidence that explains the effects of acupuncture for AD and analyzes brain responses to acupuncture at cognitive-related acupoints [Baihui (GV 20), Shenmen (HT 7), Zusanli (ST 36), Neiguan (PC 6), and Taixi (KI 3)] from perspectives of acupoint specificity and acupoint combinations. Key issues and directions to consider in future studies are also put forward. This review should deepen our understanding of how brain imaging studies can be used to explore the underlying mechanisms of acupuncture in AD.
基金supported by grants from the State-Funded Construction Projects Key Clinical Specialist(2013-2015)the Hunan Provincial Science and Technology Department,No.2009FJ3092
文摘Previous neuropathological studies regarding traumatic brain injury have primarily focused on changes in large structures, for example, the clinical prognosis after cerebral contusion, intrace- rebral hematoma, and epidural and subdural hematoma. In fact, many smaller injuries can also lead to severe neurological disorders. For example, cerebral microbleeds result in the dysfunc- tion of adjacent neurons and the disassociation between cortex and subcortical structures. These tiny changes cannot be adequately visualized on CT or conventional MRI. In contrast, gradient echo sequence-based susceptibility-weighted imaging is very sensitive to blood metabolites and microbleeds, and can be used to evaluate traumatic cerebral microbleeds with high sensitivity and accuracy. Cerebral microbleed can be considered as an important imaging marker for dif- fuse axonal injury with potential relevance for prognosis. For this reason, based on experimental and clinical studies, this study reviews the role of imaging data showing traumatic cerebral microbleeds in the evaluation of cerebral neuronal injury and neurofunctional loss.
基金supported by the National Stroke Rehabilitation Research Foundation of the Ministry of Health, China,No.01BA703B18bthe Young and Middle-Aged Clinical Scientists Research Foundation of Shanghai Government,No.01YZK
文摘To investigate the feasibility and time window of early detection of Wallerian degeneration in the corticospinal tract after middle cerebral artery infarction, 23 patients were assessed using magnetic resonance diffusion tensor imaging at 3.0T within 14 days after the infarction. The fractional anisotropy values of the affected corticospinal tract began to decrease at 3 days after onset and decreased in all cases at 7 days. The diffusion coefficient remained unchanged. Experimental findings indicate that diffusion tensor imaging can detect the changes associated with Wallerian degeneration of the corticospinal tract as early as 3 days after cerebral infarction.
基金supported by a grant from the Clinical Medicine Science and Technology Projects in Jiangsu Province of China,No.BL2014037a grant from the Changzhou City Science and Technology Support Plan in China,No.CE20165027+1 种基金a grant from the Changzhou Health Development Planning Commission Major Projects in China,No.ZD201515the Changzhou High-Level Health Personnel Training Project Funding
文摘With improvements in care of at-risk neonates, more and more children survive. This makes it increasingly important to assess, soon after birth, the prognosis of children with hypoxic-ischemic encephalopathy. Computed tomography, ultrasound, and conventional magnetic resonance imaging are helpful to diagnose brain injury, but cannot quantify white matter damage. In this study, ten full-term infants without brain injury and twenty-two full-term neonates with hypoxic-ischemic encephalopathy (14 moderate cases and 8 severe cases) underwent diffusion tensor imaging to assess its feasibility in evaluating white matter damage in this condition. Results demonstrated that fractional anisotropy, voxel volume, and number of fiber bundles were different in some brain areas between infants with brain injury and those without brain injury. The correlation between fractional anisotropy values and neonatal behavioral neurological assessment scores was closest in the posterior limbs of the internal capsule. We conclude that diffusion tensor imaging can quantify white matter injury in neonates with hypoxic-ischemic encephalopathy.