期刊文献+
共找到224篇文章
< 1 2 12 >
每页显示 20 50 100
3-N-butylphthalide improves neuronal morphology after chronic cerebral ischemia 被引量:44
1
作者 Wanhong Zhao Chao Luo +5 位作者 Jue Wang Jian Gong Bin Li Yingxia Gong Jun Wang Hanqin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第7期719-726,共8页
3-N-butylphthalide is an ettectwe drug for acute iscemlc stroke. However, its effects on cnromc cerebral ischemia-induced neuronal injury remain poorly understood. Therefore, this study li- gated bilateral carotid art... 3-N-butylphthalide is an ettectwe drug for acute iscemlc stroke. However, its effects on cnromc cerebral ischemia-induced neuronal injury remain poorly understood. Therefore, this study li- gated bilateral carotid arteries in 15-month-old rats to simulate chronic cerebral ischemia in aged humans. Aged rats were then intragastrically administered 3-n-butylphthalide. 3-N-butylphtha- lide administration improved the neuronal morphology in the cerebral cortex and hippocampus of rats with chronic cerebral ischemia, increased choline acetyltransferase activity, and decreased malondialdehyde and amyloid beta levels, and greatly improved cognitive function. These findings suggest that 3-n-butylphthalide alleviates oxidative stress caused by chronic cerebral ischemia, improves cholinergic function, and inhibits amyloid beta accumulation, thereby im- proving cerebral neuronal injury and cognitive deficits. 展开更多
关键词 nerve regeneration DEPRESSION functional MRI graph theory complex networks brainnetwork classification feature selection NSFC grant neural regeneration
下载PDF
一种基于深层次多尺度特征融合CNN的SAR图像舰船目标检测算法 被引量:32
2
作者 杨龙 苏娟 +1 位作者 黄华 李响 《光学学报》 EI CAS CSCD 北大核心 2020年第2期126-134,共9页
基于深度学习的目标检测技术在目标检测领域有强大的生命力,但是将其用于合成孔径雷达(SAR)图像舰船目标检测时并没有达到预期的效果。提出了一种基于卷积神经网络的SAR图像舰船目标检测算法用来检测多场景下的多尺度舰船目标,在单发多... 基于深度学习的目标检测技术在目标检测领域有强大的生命力,但是将其用于合成孔径雷达(SAR)图像舰船目标检测时并没有达到预期的效果。提出了一种基于卷积神经网络的SAR图像舰船目标检测算法用来检测多场景下的多尺度舰船目标,在单发多盒探测器检测框架的基础上,使用性能更好的Darknet-53作为特征提取网络,加入更深层次的特征融合网络,生成语义信息更加丰富的新的特征预测图。同时在训练策略上使用了一种新的二分类损失函数来解决训练过程中难易样本失衡的问题。在扩展的公开SAR图像舰船数据集上进行验证实验,实验结果表明,所提方法对复杂场景下不同尺寸的舰船目标的检测展现出了良好的适应性。 展开更多
关键词 机器视觉 合成孔径雷达 神经网络 舰船目标检测 单发多盒探测器 复杂场景
原文传递
采用复合控制的直流力矩电机摩擦补偿 被引量:20
3
作者 于志伟 曾鸣 乔大鹏 《电机与控制学报》 EI CSCD 北大核心 2008年第5期539-544,共6页
针对陀螺漂移测试转台直流力矩电机系统中存在的非线性动态摩擦和负载扰动,为提高转台位置跟踪精确度,采用复合控制方法进行摩擦补偿研究。在转台直流电机系统中,电机模型采用简化的二阶线性直流电机模型,摩擦模型采用摩擦参数为非一致... 针对陀螺漂移测试转台直流力矩电机系统中存在的非线性动态摩擦和负载扰动,为提高转台位置跟踪精确度,采用复合控制方法进行摩擦补偿研究。在转台直流电机系统中,电机模型采用简化的二阶线性直流电机模型,摩擦模型采用摩擦参数为非一致性变化的动态摩擦模型。补偿方法包含一个参数自适应律和CMAC神经网络,用于估计未知模型参数、辨识位置周期摩擦扰动并给与补偿。仿真结果表明,复合控制补偿方法保证了闭环系统全局稳定性和对期望位置信号的渐进跟踪,提高了转台位置跟踪精确度。 展开更多
关键词 转台 自适应控制器 神经网络 复合控制 摩擦
下载PDF
Complex Network Classification with Convolutional Neural Network 被引量:17
4
作者 Ruyue Xin Jiang Zhang Yitong Shao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2020年第4期447-457,共11页
Classifying large-scale networks into several categories and distinguishing them according to their fine structures is of great importance to several real-life applications.However,most studies on complex networks foc... Classifying large-scale networks into several categories and distinguishing them according to their fine structures is of great importance to several real-life applications.However,most studies on complex networks focus on the properties of a single network and seldom on classification,clustering,and comparison between different networks,in which the network is treated as a whole.Conventional methods can hardly be applied on networks directly due to the non-Euclidean properties of data.In this paper,we propose a novel framework of Complex Network Classifier(CNC)by integrating network embedding and convolutional neural network to tackle the problem of network classification.By training the classifier on synthetic complex network data,we show CNC can not only classify networks with high accuracy and robustness but can also extract the features of the networks automatically.We also compare our CNC with baseline methods on benchmark datasets,which shows that our method performs well on large-scale networks. 展开更多
关键词 complex NETWORK NETWORK CLASSIFICATION DEEP WALK Convolutional neural Network(CNN)
原文传递
沉积微相测井资料神经网络判别方法研究 被引量:11
5
作者 唐为清 郭荣坤 +3 位作者 王忠东 王红 罗安银 毋学平 《沉积学报》 CAS CSCD 北大核心 2001年第4期581-585,共5页
不同的沉积微相可以由不同的相标志组合识别 ,相标志与沉积微相之间的关系可以采用神经网络通过许多基本处理单元间并行的相互作用建立。沉积微相相标志既可以由地质资料的观察、岩芯分析直接获得 。
关键词 神经网络 沉积微相 相标志 复杂岩性 测井资料 地质资料 岩芯分析 沉积环境
下载PDF
基于特征融合的遥感图像舰船目标检测方法 被引量:13
6
作者 史文旭 江金洪 鲍胜利 《光子学报》 EI CAS CSCD 北大核心 2020年第7期51-61,共11页
针对常用的目标检测算法对遥感图像中的舰船目标进行检测时存在检测精度与实时性兼顾不佳的问题,提出了基于特征融合的遥感图像舰船目标检测算法来检测复杂场景下的多尺度舰船目标.该算法以多尺度单发射击检测框架为基础,增加反卷积特... 针对常用的目标检测算法对遥感图像中的舰船目标进行检测时存在检测精度与实时性兼顾不佳的问题,提出了基于特征融合的遥感图像舰船目标检测算法来检测复杂场景下的多尺度舰船目标.该算法以多尺度单发射击检测框架为基础,增加反卷积特征融合模块和池化特征融合模块,增强网络特征提取的能力.同时设计聚焦分类损失函数来解决训练过程中正负样本失衡的问题.在高分遥感舰船目标数据集上的实验结果表明,所提方法能够有效地增强复杂场景下舰船目标的检测精度.此外,该算法对遥感图像中的模糊舰船目标的检测效果也优于多尺度单发射击检测框架. 展开更多
关键词 遥感图像 舰船目标检测 神经网络 复杂场景 深度学习
下载PDF
Resting-state functional connectivity abnormalities in first-onset unmedicated depression 被引量:11
7
作者 Hao Guo Chen Cheng +3 位作者 Xiaohua Cao Jie Xiang Junjie Chen Kerang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第2期153-163,共11页
Depression is closely linked to the morphology and functional abnormalities of multiple brain regions; however, its topological structure throughout the whole brain remains unclear. We col- lected resting-state functi... Depression is closely linked to the morphology and functional abnormalities of multiple brain regions; however, its topological structure throughout the whole brain remains unclear. We col- lected resting-state functional MRI data from 36 first-onset unmedicated depression patients and 27 healthy controls. The resting-state functional connectivity was constructed using the Auto- mated Anatomical Labeling template with a partial correlation method. The metrics calculation and statistical analysis were performed using complex network theory. The results showed that both depressive patients and healthy controls presented typical small-world attributes. Compared with healthy controls, characteristic path length was significantly shorter in depressive patients, suggesting development toward randomization. Patients with depression showed apparently abnormal node attributes at key areas in cortical-striatal-pallidal-thalamic circuits. In addition, right hippocampus and right thalamus were closely linked with the severity of depression. We se- lected 270 local attributes as the classification features and their P values were regarded as criteria for statistically significant differences. An artificial neural network algorithm was applied for classification research. The results showed that brain network metrics could be used as an effec- tive feature in machine learning research, which brings about a reasonable application prospect for brain network metrics. The present study also highlighted a significant positive correlation between the importance of the attributes and the intergroup differences; that is, the more sig- nificant the differences in node attributes, the stronger their contribution to the classification. Experimental findings indicate that statistical significance is an effective quantitative indicator of the selection of brain network metrics and can assist the clinical diagnosis of depression. 展开更多
关键词 nerve regeneration DEPRESSION functional MRI graph theory complex networks brainnetwork classification feature selection NSFC grant neural regeneration
下载PDF
复形态联想记忆及其性能分析 被引量:12
8
作者 陈松灿 刘伟龙 《软件学报》 EI CSCD 北大核心 2002年第3期453-459,共7页
在Ritter的实域形态联想记忆(real morphological associative memory,简称RMAM)模型的基础上,通过在复数域中序关系的引入构成复数格和环,导出了在复数域上与RMAM相一致的联想规则,构建了一类复域MAM(complex MAM,简称CMAM),从而将RMA... 在Ritter的实域形态联想记忆(real morphological associative memory,简称RMAM)模型的基础上,通过在复数域中序关系的引入构成复数格和环,导出了在复数域上与RMAM相一致的联想规则,构建了一类复域MAM(complex MAM,简称CMAM),从而将RMAM从实域推广至复域,使其可直接处理复信号(如经FFT(fast Fourier Transformation)变换所得数据).证明了该模型的收敛性,分析了其纠错能力和存储能力,并获得了与RMAM相一致的一系列定理和性质.此外,还比较了复形态网络和其他网络(如Hopfield神经网络)的异同.计算机仿真结果表明了CMAM的可行性. 展开更多
关键词 形态学 复域 复开态联想记忆 性能分析 人工神经网络
下载PDF
内连式复值双向联想记忆模型及性能分析 被引量:4
9
作者 陈松灿 夏开军 《软件学报》 EI CSCD 北大核心 2002年第3期433-437,共5页
Lee的复域多值双向联想记忆模型(complex domain bidirectional associative memory,简称CDBAM)不仅将Kosko的实域BAM(bidirectional associative memory)推广至复域,而且推广至多值情形,以利于多值模式(如灰级图像等)间的联想.在此基础... Lee的复域多值双向联想记忆模型(complex domain bidirectional associative memory,简称CDBAM)不仅将Kosko的实域BAM(bidirectional associative memory)推广至复域,而且推广至多值情形,以利于多值模式(如灰级图像等)间的联想.在此基础上,提出了一个新的推广模型:复域内连式多值双向联想记忆模型(intraconnected CDBAM,简称ICDBAM),通过定义的能量函数证明了它在同步与异步更新方式下的稳定性,从而保证所有训练样本对成为其稳定点,克服了CDBAM所存在的补码问题.计算机模拟证明了该模型比CDBAM具有更高的存储容量和更好的纠错性能. 展开更多
关键词 神经网络 能量函数 复合域 人工智能 内连式复值双向联想记忆模型 性能分析
下载PDF
基于改进ResNet网络的复数SAR图像舰船目标识别方法 被引量:7
10
作者 雷禹 冷祥光 +2 位作者 周晓艳 孙忠镇 计科峰 《系统工程与电子技术》 EI CSCD 北大核心 2022年第12期3652-3660,共9页
合成孔径雷达(synthetic aperture radar,SAR)采用微波相干成像,因此SAR图像本质上是复数的。传统基于神经网络的SAR图像目标识别方法,通常只处理SAR图像的幅度信息,无法有效利用SAR图像特有的复数信息。本文面向SAR图像中的舰船目标识... 合成孔径雷达(synthetic aperture radar,SAR)采用微波相干成像,因此SAR图像本质上是复数的。传统基于神经网络的SAR图像目标识别方法,通常只处理SAR图像的幅度信息,无法有效利用SAR图像特有的复数信息。本文面向SAR图像中的舰船目标识别应用,从SAR图像的本质出发,首先通过组合SAR图像的实部、虚部和幅度三通道信息,隐式地提供了输入数据的复数信息表示;然后在ResNet18网络及其结构基础上引入通道注意力机制,使网络能自适应学习实部、虚部和幅度三通道之间包含的复数信息;最后引入标签平滑正则化,解决因复数数据集样本较少出现的过拟合现象。基于OpenSARShip数据集的实验结果表明,所提方法可以较好利用SAR图像本身的复数信息,在一定程度上提升了基于深度神经网络的舰船目标识别效果。 展开更多
关键词 合成孔径雷达 神经网络 复数信息 舰船目标识别
下载PDF
基于神经网络的磷酸三丁酯络合萃取丁酸的研究(英文) 被引量:5
11
作者 管国锋 万辉 +1 位作者 畅伟贤 姚虎卿 《计算机与应用化学》 CAS CSCD 北大核心 2004年第6期823-827,共5页
选用磷酸三丁酯和正辛醇组成的萃取剂络合萃取丁酸,利用BP 人工神经网络将萃取平衡分配系数和萃取操作条件——丁酸的初始浓度、磷酸三丁酯的体积分率以及温度进行了关联,建立了络合萃取平衡分配系数的神经网络模型,并用该模型预测了不... 选用磷酸三丁酯和正辛醇组成的萃取剂络合萃取丁酸,利用BP 人工神经网络将萃取平衡分配系数和萃取操作条件——丁酸的初始浓度、磷酸三丁酯的体积分率以及温度进行了关联,建立了络合萃取平衡分配系数的神经网络模型,并用该模型预测了不同萃取条件对平衡分配系数的影响。结果表明:该模型不仅具有较高的计算精度,而且具有满意的预测能力,从而能够利用该模型来解决络合萃取过程中的实际问题。 展开更多
关键词 神经网络 磷酸三丁酯 络合萃取 丁酸
原文传递
A QUANTUM MULTI-AGENT BASED NEURAL NETWORK MODEL FOR FAILURE PREDICTION 被引量:5
12
作者 Wei Wu Min Liu +1 位作者 Qing Liu Weiming Shen 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2016年第2期210-228,共19页
An effective prognostic program is crucial to the predictive maintenance of complex equipment since it can improve productivity, prolong equipment life, and enhance system safety. This paper proposes a novel technique... An effective prognostic program is crucial to the predictive maintenance of complex equipment since it can improve productivity, prolong equipment life, and enhance system safety. This paper proposes a novel technique for accurate failure prognosis based on back propagation neural network and quantum multi-agent algorithm. Inspired by the extensive research of quantum computing theory and multi-agent systems, the technique employs a quantum multi-agent strategy, with the main characteristics of quantum agent representation and several operations including fitness evaluation, cooperation, crossover and mutation, for parameters optimization of neural network to avoid the deficiencies such as slow convergence and liability of getting stuck to local minima. To validate the feasibility of the proposed approach, several numerical approximation experiments were firstly designed, after which real vibrational data of bearings from the Laboratory of Cincinnati University were analyzed and used to assess the health condition for a given future point. The results were rather encouraging and indicated that the presented forecasting method has the potential to be utilized as an estimation tool for failure prediction in industrial machinery. 展开更多
关键词 Failure prediction complex equipment quantum-inspired multi-agent algorithm back propagation neural network
原文传递
自组织建模方法及西部GDP增长模型研究 被引量:3
13
作者 康银劳 颜科琦 《西南交通大学学报》 EI CSCD 北大核心 2001年第2期206-210,共5页
在自组织控制理论的基础上 ,引入人工神经网络思想提出一种新的数据挖掘方法。建模过程中活动神经元逐层大量产生和淘汰 ,模型得以最终进化到其最优复杂性。阐述了自组织算法原理、建模步骤及网络结构。给出针对西部地区经济发展的建模... 在自组织控制理论的基础上 ,引入人工神经网络思想提出一种新的数据挖掘方法。建模过程中活动神经元逐层大量产生和淘汰 ,模型得以最终进化到其最优复杂性。阐述了自组织算法原理、建模步骤及网络结构。给出针对西部地区经济发展的建模研究实例 ,以确定西部开发中最重要的若干因素 ,并量化分析各自力度强弱。比较全国模型得到西部经济特点 。 展开更多
关键词 神经网络 最优复杂性 西部经济 国内生产总值 自组织控制 数据挖掘 增长模型
下载PDF
Repeated febrile convulsions impair hippocampal neurons and cause synaptic damage in immature rats: neuroprotective effect of fructose-1,6-diphosphate 被引量:4
14
作者 Jianping Zhou Fan Wang +3 位作者 Jun Zhang Hui Gao Yufeng Yang Rongguo Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期937-942,共6页
Fructose-1,6-diphosphate is a metabolic intermediate that promotes cell metabolism. We hypothesize that fructose-1,6-diphosphate can protect against neuronal damage induced by febrile convulsions. Hot-water bathing wa... Fructose-1,6-diphosphate is a metabolic intermediate that promotes cell metabolism. We hypothesize that fructose-1,6-diphosphate can protect against neuronal damage induced by febrile convulsions. Hot-water bathing was used to establish a repetitive febrile convulsion model in rats aged 21 days, equivalent to 3–5 years in humans. Ninety minutes before each seizure induction, rats received an intraperitoneal injection of low- or high-dose fructose-1,6-diphosphate(500 or 1,000 mg/kg, respectively). Low- and high-dose fructose-1,6-diphosphate prolonged the latency and shortened the duration of seizures. Furthermore, high-dose fructose-1,6-diphosphate effectively reduced seizure severity. Transmission electron microscopy revealed that 24 hours after the last seizure, high-dose fructose-1,6-diphosphate reduced mitochondrial swelling, rough endoplasmic reticulum degranulation, Golgi dilation and synaptic cleft size, and increased synaptic active zone length, postsynaptic density thickness, and synaptic interface curvature in the hippocampal CA1 area. The present findings suggest that fructose-1,6-diphosphate is a neuroprotectant against hippocampal neuron and synapse damage induced by repeated febrile convulsion in immature rats. 展开更多
关键词 nerve regeneration brain injury febrile convulsions FRUCTOSE-1 6-DIPHOSPHATE hippocampus seizures mitochondria rough endoplasmic reticulum Golgi complex electron microscope animal model NSFC grant neural regeneration
下载PDF
基于神经网络的复杂系统可靠性精确分配模型 被引量:4
15
作者 张宏斌 《机械》 2009年第5期5-8,18,共5页
针对复杂系统可靠性分配中的关键问题和难点,提出了一种基于神经网络的采用逆向思维进行复杂系统可靠性分配的方法。利用误差反向传播的改进算法,以系统可靠度和各子系统自身约束条件为网络输入,以各子系统可靠度相互比例为网络输出,对... 针对复杂系统可靠性分配中的关键问题和难点,提出了一种基于神经网络的采用逆向思维进行复杂系统可靠性分配的方法。利用误差反向传播的改进算法,以系统可靠度和各子系统自身约束条件为网络输入,以各子系统可靠度相互比例为网络输出,对样本数据进行训练。借用神经网络中的权值和阈值,反映了不同系统可靠度及对应各子系统自身约束条件下,各个子系统可靠性之间的相互关系,从而得到子系统可靠性分配权重,实现对复杂系统可靠性进行精确分配。 展开更多
关键词 神经网络 可靠性分配 复杂系统 算法 逆向思维
下载PDF
用神经网络和随机复合形搜索实施在线优化 被引量:2
16
作者 何小其 麻红昭 +1 位作者 胡上序 隋保友 《化工自动化及仪表》 CAS 北大核心 2002年第4期24-28,共5页
提出一种基于神经网络和随机复合形法搜索的在线稳态优化方法 ,并对某厂气体分馏装置的生产过程的优化问题进行测试 。
关键词 神经网络 随机复合形 在线优化 炼油 气体分馏装置
下载PDF
Deep learning-based subseasonal to seasonal precipitation prediction in southwest China:Algorithm comparison and sensitivity to input features 被引量:1
17
作者 GuoLu Gao Yang Li +3 位作者 XueYun Zhou XiaoMing Xiang JiaQi Li ShuCheng Yin 《Earth and Planetary Physics》 CAS CSCD 2023年第4期471-486,共16页
The prediction of precipitation at subseasonal to seasonal(S2S)timescales remains an enormous challenge because of the gap between weather and climate predictions.This study compares three deep learning algorithms,nam... The prediction of precipitation at subseasonal to seasonal(S2S)timescales remains an enormous challenge because of the gap between weather and climate predictions.This study compares three deep learning algorithms,namely,the long short-term memory recurrent(LSTM),gated recurrent unit(GRU),and recurrent neural network(RNN),and selects the optimal algorithm to establish an S2S precipitation prediction model.The models were evaluated in four subregions of the Sichuan Province:the Plateau,Valley,eastern Basin,and western Basin.The results showed that the RNN model had better performance than the LSTM and GRU models.This could be because the RNN model had an advantage over the LSTM model in the transformation of climate indices with positive and negative variations.In the validation of test datasets,the RNN model successfully predicted the precipitation trend in most years during the wet season(May-October).The RNN model had a lower prediction bias(within±10%),higher sign accuracy of the precipitation trend(~88.95%),and greater accuracy of the maximum precipitation month(>0.85).For the prediction of different lead times,the RNN model was able to provide a stable trend prediction for summer precipitation,and the time correlation coefficient score was higher than that of the National Climate Center of China.Furthermore,this study proposed a method to measure the sensitivity of the RNN model to different input features,which may provide unprecedented insights into the nonlinear relationship and complicated feedback process among climate systems.The results of the sensitivity distribution are as follows.First,the Niño 4 and Niño 3.4 indices were equally important for the prediction of wet season precipitation.Second,the sensitivity of the snow cover on the Tibetan Plateau was higher than that in the Northern Hemisphere.Third,an opposite sensitivity appeared in two different patterns of the Indian Ocean and sea ice concentrations in the Arctic and the Barents Sea. 展开更多
关键词 recurrent neural network long short-term memory recurrent sensitivity analysis artificial intelligence explainability complex terrain southwest China
下载PDF
Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders
18
作者 Nai-Yu Ke Tian-Yi Zhao +2 位作者 Wan-Rong Wang Yu-Tong Qian Chao Liu 《World Journal of Stem Cells》 SCIE 2023年第4期235-247,共13页
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re... Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications. 展开更多
关键词 neural stem/progenitor cell BRG1/BRM-associated factor complex SUBUNIT Proliferation DIFFERENTIATION neural developmental disorde
下载PDF
Correlativity between neural complex and gonadal development in Styela plicata 被引量:3
19
作者 FANG Yongqiang, LIN Jiahan and HUANG Weiquan1. Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China 2. Department of Biology, Xiamen U-niversity, Xiamen 361005, China 3. Fourth Military Medical University, Xi’an 710032, China 《Chinese Science Bulletin》 SCIE EI CAS 1997年第10期864-867,共4页
IT has been demonstrated that two reproductive hormones,gonadotropin-releasing hormone(GnRH)and gonadotropin(GTH),exist in the nervous system and Hatschek’s pit oflancelet,a species of Cephalochordata,and that these ... IT has been demonstrated that two reproductive hormones,gonadotropin-releasing hormone(GnRH)and gonadotropin(GTH),exist in the nervous system and Hatschek’s pit oflancelet,a species of Cephalochordata,and that these hormones are involved in the regulationof gonadal development and reproductive activity of lancelet.However,no report could 展开更多
关键词 Styela plicata neural complex REPRODUCTIVE hormone.
原文传递
多层前向小世界神经网络及其函数逼近 被引量:4
20
作者 李小虎 杜海峰 +1 位作者 张进华 王孙安 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第7期836-842,共7页
借鉴复杂网络的研究成果,探讨一种在结构上处于规则和随机连接型神经网络之间的网络模型—-多层前向小世界神经网络.首先对多层前向规则神经网络中的连接依重连概率p进行重连,构建新的网络模型,对其特征参数的分析表明,当0<p<1时... 借鉴复杂网络的研究成果,探讨一种在结构上处于规则和随机连接型神经网络之间的网络模型—-多层前向小世界神经网络.首先对多层前向规则神经网络中的连接依重连概率p进行重连,构建新的网络模型,对其特征参数的分析表明,当0<p<1时,该网络在聚类系数上不同于Watts-Strogatz模型;其次用六元组模型对网络进行描述;最后,将不同p值下的小世界神经网络用于函数逼近,仿真结果表明,当p=0.1时,网络具有最优的逼近性能,收敛性能对比试验也表明,此时网络在收敛性能、逼近速度等指标上要优于同规模的规则网络和随机网络. 展开更多
关键词 小世界网络 神经网络 函数逼近 复杂网络
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部