In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions ...In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions to this problem is obtained.展开更多
The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means o...The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.展开更多
In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we ...In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.展开更多
In this article, we consider a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and one sign- changing function. The existence and multiplic...In this article, we consider a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and one sign- changing function. The existence and multiplicity results of positive solutions are obtained by variational methods.展开更多
文摘In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions to this problem is obtained.
基金supported by NSFC(10771085)Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Educationthe 985 Program of Jilin University
文摘The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.
文摘In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.
文摘In this article, we consider a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and one sign- changing function. The existence and multiplicity results of positive solutions are obtained by variational methods.