An interdisciplinary-field research brings new elements in bridging the gravitational interaction with the Standard Model, by focusing on 3 factors. The involvement of inductive and capacitive-like phase shifts in the...An interdisciplinary-field research brings new elements in bridging the gravitational interaction with the Standard Model, by focusing on 3 factors. The involvement of inductive and capacitive-like phase shifts in the gravitational interaction, the exploration of swapping between parameters of time and space, and the provision of a way to handle imaginary terms. The existence of phase shifts in the gravitational interaction is documented via re-interpretation of older quantitative predictions, and is specifically linked to the Higgs field mechanism. Same as in electronics, a phase shift splits energy into real and imaginary coordinates. This allows to quantitatively treat inertia as an inductive-like potential, alongside the swapping of parameters of time and space. That also allows to treat the Bernoulli pressure in quantitative analogy to a magnetic potential, as well as barrier penetration in quantitative symmetry to the crossing of displacement-current through a capacitor. The findings shed light on how fields & forces, including reaction forces function, while the role of imaginary numbers is analyzed. Interaction of fields with quantum particles is discussed to involve a Fourier-series effect that results in energy quantization. The role of phase shifts becomes essential in bridging between wave nature and effects of relativity, and the Weinberg angle is explained to have the role of an inductive-like shift. The precise value of this angle is proposed to link to elementary particles’ properties like spin, or the value of quarks’ charge. Symmetries introduced allow to address the abundance of matter over antimatter in certain analogy to theory from electronics, to address galaxy rotation curves through an interaction involving negative energy, and more. The new concepts open up room for advancements in energy exploitation over interdisciplinary areas.展开更多
With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials ...With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure.展开更多
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ...Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhan展开更多
Negative capacitance(NC)has the potential to enable low power microelectronics beyond the fundamental thermionic limit,and it has been theorized that the thermodynamically unstable NC of ferroelectrics can be stabiliz...Negative capacitance(NC)has the potential to enable low power microelectronics beyond the fundamental thermionic limit,and it has been theorized that the thermodynamically unstable NC of ferroelectrics can be stabilized by linear dielectric,making negative capacitance ferroelectric field effect transistors(NC-FeFET)possible.Nevertheless,the validity of NC as a physical concept for ferroelectrics remain contentious despite numerous theoretical and experimental investigations,and the intrinsic ferroelectric NC with suppressed polarization has not been demonstrated except locally at vortex core.While NC-FeFET with subthreshold swing(SS)lower than 60 mV/dec limit has been reported,such device characteristics has not been directly connected to suppressed polarization at materials’level,and alternative mechanisms other than NC have also been proposed.Here we demonstrate stable sub-60 mV/dec SS with hysteresis free Isingle bondV in NC-FeFET based on SrTiO_(3)/Pb(Zr_(0.1)Ti_(0.9))O_(3)/SrTiO_(3) heterostructure,and observe its suppressed polarization at both macroscopic and microscopic scales.The intrinsic ferroelectric NC thus is experimentally confirmed and directly connected to NC-FeFET performance,and the mica-based device is also highly flexible and robust under cyclic bending as well as extended heating.展开更多
文摘An interdisciplinary-field research brings new elements in bridging the gravitational interaction with the Standard Model, by focusing on 3 factors. The involvement of inductive and capacitive-like phase shifts in the gravitational interaction, the exploration of swapping between parameters of time and space, and the provision of a way to handle imaginary terms. The existence of phase shifts in the gravitational interaction is documented via re-interpretation of older quantitative predictions, and is specifically linked to the Higgs field mechanism. Same as in electronics, a phase shift splits energy into real and imaginary coordinates. This allows to quantitatively treat inertia as an inductive-like potential, alongside the swapping of parameters of time and space. That also allows to treat the Bernoulli pressure in quantitative analogy to a magnetic potential, as well as barrier penetration in quantitative symmetry to the crossing of displacement-current through a capacitor. The findings shed light on how fields & forces, including reaction forces function, while the role of imaginary numbers is analyzed. Interaction of fields with quantum particles is discussed to involve a Fourier-series effect that results in energy quantization. The role of phase shifts becomes essential in bridging between wave nature and effects of relativity, and the Weinberg angle is explained to have the role of an inductive-like shift. The precise value of this angle is proposed to link to elementary particles’ properties like spin, or the value of quarks’ charge. Symmetries introduced allow to address the abundance of matter over antimatter in certain analogy to theory from electronics, to address galaxy rotation curves through an interaction involving negative energy, and more. The new concepts open up room for advancements in energy exploitation over interdisciplinary areas.
基金supported by the National Natural Science Foundation of China(Grant No.41941018).
文摘With the reduction of shallow resources,the degree of damage and the frequency of dynamic hazards,such as deep rock bursts and impact ground pressure,are increasing dramatically.However,the existing support materials are incapable of meeting the safety require-ments of the refuges and roadways under a strong impact force.To effectively solve these problems,a novel negative Poisson’s ratio(NPR)anchor cable with excellent properties,such as impact resistance and the ability to withstand large deformation,is proposed.In the present study,a series of field tests and numerical simulations are conducted to investigate the mechanical and support charac-teristics of NPR anchor cables under blast impact.Laboratory mechanical tests show that NPR anchor cables can maintain constant resistance and produce large deformation under the action of multiple drop hammer impacts.According to the results of field tests,the roadway supported by conventional anchor cables was unable to endure the blast impact,while the roadway supported by NPR anchor cables was able to withstand the severe impact equivalent to a Class 3 mine earthquake.The dynamic response of the NPR anchor cable that supports the roadway under explosion is investigated using the innovative coupled modeling approach that combines the finite element method and the discrete element method,and the support effect of the NPR anchor cable is verified.The study shows that the NPR anchor cable has a superior impact and blast resistance performance,and a broad application prospect in the support of chambers and roadways that are at high risk of rock bursts and impact ground pressure.
基金supported by the National Natural Science Foundation of China(Nos.52106099 and 51576004)the Natural Science Foundation of Shandong Province(No.ZR2022YQ57)the Taishan Scholars Program.
文摘Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhan
基金We acknowledge the support of National Natural Science Foundation of China(12192213,52302142,92066203 and 92066102)Shenzhen Science and Technology Program(KQTD20170810160424889,RCYX20200714114733204,JCYJ20200109115219157 and JCYJ20200109115210307)+2 种基金Guangdong Provincial Key Laboratory Program(2021B1212040001)from the Department of Science and Technology of Guangdong Province,Guangdong Basic and Applied Basic Research Foundation(2021A1515110689)China Postdoctoral Science Foundation(2021M693281).
文摘Negative capacitance(NC)has the potential to enable low power microelectronics beyond the fundamental thermionic limit,and it has been theorized that the thermodynamically unstable NC of ferroelectrics can be stabilized by linear dielectric,making negative capacitance ferroelectric field effect transistors(NC-FeFET)possible.Nevertheless,the validity of NC as a physical concept for ferroelectrics remain contentious despite numerous theoretical and experimental investigations,and the intrinsic ferroelectric NC with suppressed polarization has not been demonstrated except locally at vortex core.While NC-FeFET with subthreshold swing(SS)lower than 60 mV/dec limit has been reported,such device characteristics has not been directly connected to suppressed polarization at materials’level,and alternative mechanisms other than NC have also been proposed.Here we demonstrate stable sub-60 mV/dec SS with hysteresis free Isingle bondV in NC-FeFET based on SrTiO_(3)/Pb(Zr_(0.1)Ti_(0.9))O_(3)/SrTiO_(3) heterostructure,and observe its suppressed polarization at both macroscopic and microscopic scales.The intrinsic ferroelectric NC thus is experimentally confirmed and directly connected to NC-FeFET performance,and the mica-based device is also highly flexible and robust under cyclic bending as well as extended heating.