As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,li...As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,limited EMI shielding materials are successfully used in practical applications,due to the heavy thickness and absence of sufficient strength or flexibility.Herein,an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process.The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9±5.0 MPa and a fracture strain of 4.6±0.2%.Particularly,the paper shows a high electrical conductivity of 2506.6 S m?1 and EMI shielding effectiveness(EMI SE)of 38.4 dB due to the sandwich structure in improving EMI SE,and the gradient structure on regulating the contributions from reflection and absorption.This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.展开更多
In this study, atomic force microscope (AFM) tips are used as tools to cut and manipulate carbon nanotubes on various surfaces. The lateral forces acting on AFM tips during manipulation are also recorded and analyzed ...In this study, atomic force microscope (AFM) tips are used as tools to cut and manipulate carbon nanotubes on various surfaces. The lateral forces acting on AFM tips during manipulation are also recorded and analyzed from the perspective of micro-mechanics. It is found that differences in surface conditions can lead to obvious increase in micro-friction between nanotube and substrate. And also due to rehybridization, carbon nanotubes present excellent resilience when undergoing different degrees of strain. Finally, carbon nanotubes can complexly deform from elastic stage to plastic stage before complete rupture.展开更多
A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube (CNT) reinforced AI (CNT/AI) and 6061AI (CNT/6061AI) composites. Microstructural observations...A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube (CNT) reinforced AI (CNT/AI) and 6061AI (CNT/6061AI) composites. Microstructural observations indicated that CNTs were uniformly dispersed in the matrix in both CNT/AI and CNT/6061AI composites. Mg and Si elements tended to segregate at CNT-AI interfaces in the CNT/6061AI composite during artificial aging treatment. The tensile properties of both the AI and 6061AI were increased by CNT incorporation. The electrical conductivity of CNT/AI was decreased by CNT addition, while CNT/6061AI exhibited an increase in electrical conductivity due to the Mg and Si segregation.展开更多
As promising candidates for energy-storage devices, supercapacitors (SCs) have attracted considerable attention because of their unique features, such as their high power density, outstanding rate capability, excell...As promising candidates for energy-storage devices, supercapacitors (SCs) have attracted considerable attention because of their unique features, such as their high power density, outstanding rate capability, excellent cycling performance, and safety. The recent boom in portable electronic devices requires high- performance SCs that are flexible, simplified, thin, and integrated. Tremendous efforts have been directed towards the design and integration of planar micro- SCs (MSCs) based on different active electrode materials by various methods. This review highlights the recent developments in the device design of flexible planar MSCs and their integration with other electronic devices. The current challenges and future prospects for the development of flexible MSCs are also discussed.展开更多
The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and c...The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.展开更多
Stable homogeneous suspensions of multi-walled carbon nanotubes (MWCNTs) were prepared using gum arabic (GA) as dispersant and were incorporated to Portland cement paste. The dispersion was examined by ultraviolet...Stable homogeneous suspensions of multi-walled carbon nanotubes (MWCNTs) were prepared using gum arabic (GA) as dispersant and were incorporated to Portland cement paste. The dispersion was examined by ultraviolet visible spectroscopy (UV-vis), and the concentration measurement shows that the optimum concentration of GA is 0.45 g · L^-1. The dispersibility of the surface-modified MWCNTs in aqueous solution and cement matrix were investigated by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), and the mechanical properties of the composites were investigated. The results show that the addition of the treated nanotubes can improve both the flexural strength and the compressive strength of the Portland cement composite significantly. The flexural strength of the composite increases up to 43.38% with the MWCNT concentration of 0.08% (by weight of cement). The porosity and pore size distribution of the composites were measured by mercury intrusion porosimetry (MIP), and the results indicate that the cement paste doped with MWCNTs obtained lower porosity and concentrated pore size distribution. The morphological structure was analyzed by field emission scanning electron microscopy (FESEM) and EDS. It is shown that MWCNTs act as bridges and networks across cracks and voids, which transfer the load in case of tension, and the interface bond strength between the nanotubes and matrix is very strong.展开更多
A novel ammonia synthesis catalyst, potassium-promoted ruthenium supported on carbon nanotubes, was developed. It was found that the Ru-K/carbon nanotubes catalyst had higher activity for ammonia synthesis (20.85 ml N...A novel ammonia synthesis catalyst, potassium-promoted ruthenium supported on carbon nanotubes, was developed. It was found that the Ru-K/carbon nanotubes catalyst had higher activity for ammonia synthesis (20.85 ml NH3/h/g-cat) than the Ru-K/fullerenes ( 13.3 ml NH3/h/g-cat) at atmospheric pressure and 623 K. The catalyst had activity even at 473 K, and had the highest activity( 23.46 ml NH3/h/g-cat) at 643 K. It was suggested that the multi-walled structure favored the electron transfer, the hydrogen-storage and the hydrogen-spill which were favorable to ammonia synthesis.展开更多
Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper p...Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.展开更多
Cu based composites reinforced by 0%~25% (volume fraction) carbon nanotubes were prepared.The fracture behaviors and the rolling properties of the composites and the effects of the volume fraction of the carbon nanot...Cu based composites reinforced by 0%~25% (volume fraction) carbon nanotubes were prepared.The fracture behaviors and the rolling properties of the composites and the effects of the volume fraction of the carbon nanotubes were studied.The experimental results show that the fracture toughness of the composites is related to the pulling out and bridging of the carbon nanotubes in the fracture process.With the volume fraction of the carbon nanotubes increasing, the Vicker’s hardness and the compactness of the composites increase first and then decrease. The peaks of the hardness and the compactness occur at 12%~15% of volume fraction of carbon nanotubes.Some proper ratio of rolling reduction benefits to the comprehensive mechanical properties of the composites.展开更多
The past decade has witnessed a rapid surge of interest in the research and development of non-precious metal-based electrocatalysts for the oxygen reduction reaction (ORR). Until now, the best catalysts in acidic e...The past decade has witnessed a rapid surge of interest in the research and development of non-precious metal-based electrocatalysts for the oxygen reduction reaction (ORR). Until now, the best catalysts in acidic electrolytes have exclusively been Fe-N-C-type materials from high-temperature pyrolysis. Despite the ORR activities of metal phthalocyanine or porphyrin macrocydes having long been known, their durability remains poor. In this work, we use these macrocycles as a basis to develop a novel organic-carbon hybrid material from in-situ polymerization of iron phthalocyanine on conductive multiwalled carbon nanotube scaffolds using a low-temperature microwave heating method. At an optimal polymer- to-carbon ratio, the hybrid electrocatalyst exhibits excellent ORR activity with a positive half-wave potential (0.80 V), large mass activity (up to 18.0 A/g at 0.80 V), and a low peroxide yield (〈3%). In addition, strong electronic coupling between the polymer and carbon nanotubes is believed to suppress demetallization of the macrocycles, significantly improving cycling stability in acids. Our study represents a rare example of non-precious metal-based electrocatalysts prepared without high-temperature pyrolysis, while having ORR activity in acidic media with potential for practical applications.展开更多
基金financial support from the National Natural Science Foundation of China(31771081,51472259)the Science and Technology Commission of Shanghai Municipality(18ZR1445100)Beijing Forestry University Outstanding Young Talent Cultivation Project(2019JQ03014).
文摘As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,limited EMI shielding materials are successfully used in practical applications,due to the heavy thickness and absence of sufficient strength or flexibility.Herein,an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process.The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9±5.0 MPa and a fracture strain of 4.6±0.2%.Particularly,the paper shows a high electrical conductivity of 2506.6 S m?1 and EMI shielding effectiveness(EMI SE)of 38.4 dB due to the sandwich structure in improving EMI SE,and the gradient structure on regulating the contributions from reflection and absorption.This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50135040 and 50173001).
文摘In this study, atomic force microscope (AFM) tips are used as tools to cut and manipulate carbon nanotubes on various surfaces. The lateral forces acting on AFM tips during manipulation are also recorded and analyzed from the perspective of micro-mechanics. It is found that differences in surface conditions can lead to obvious increase in micro-friction between nanotube and substrate. And also due to rehybridization, carbon nanotubes present excellent resilience when undergoing different degrees of strain. Finally, carbon nanotubes can complexly deform from elastic stage to plastic stage before complete rupture.
基金the support of the National Basic Research Program,China(Grant Nos.2011CB932603 and 2012CB619600)the National Natural Science Foundation, China(Grant No.51331008)
文摘A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube (CNT) reinforced AI (CNT/AI) and 6061AI (CNT/6061AI) composites. Microstructural observations indicated that CNTs were uniformly dispersed in the matrix in both CNT/AI and CNT/6061AI composites. Mg and Si elements tended to segregate at CNT-AI interfaces in the CNT/6061AI composite during artificial aging treatment. The tensile properties of both the AI and 6061AI were increased by CNT incorporation. The electrical conductivity of CNT/AI was decreased by CNT addition, while CNT/6061AI exhibited an increase in electrical conductivity due to the Mg and Si segregation.
文摘As promising candidates for energy-storage devices, supercapacitors (SCs) have attracted considerable attention because of their unique features, such as their high power density, outstanding rate capability, excellent cycling performance, and safety. The recent boom in portable electronic devices requires high- performance SCs that are flexible, simplified, thin, and integrated. Tremendous efforts have been directed towards the design and integration of planar micro- SCs (MSCs) based on different active electrode materials by various methods. This review highlights the recent developments in the device design of flexible planar MSCs and their integration with other electronic devices. The current challenges and future prospects for the development of flexible MSCs are also discussed.
基金the Kulliyyah of Engineering(KOE) and Department of Biotechnology Engineering,IIUM for supporting and providing the laboratory facilities
文摘The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.
基金Funded by the National Natural Science Foundation of China(Nos.51278086,51178085)the Program for New Century Excellent Talentsin University(NCET)+1 种基金the State Key Laboratory of Coastal and Offshore Engineering(No.LP1109)the Fundamental Research Funds for the Central Universities(No.DUT11NY11)
文摘Stable homogeneous suspensions of multi-walled carbon nanotubes (MWCNTs) were prepared using gum arabic (GA) as dispersant and were incorporated to Portland cement paste. The dispersion was examined by ultraviolet visible spectroscopy (UV-vis), and the concentration measurement shows that the optimum concentration of GA is 0.45 g · L^-1. The dispersibility of the surface-modified MWCNTs in aqueous solution and cement matrix were investigated by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), and the mechanical properties of the composites were investigated. The results show that the addition of the treated nanotubes can improve both the flexural strength and the compressive strength of the Portland cement composite significantly. The flexural strength of the composite increases up to 43.38% with the MWCNT concentration of 0.08% (by weight of cement). The porosity and pore size distribution of the composites were measured by mercury intrusion porosimetry (MIP), and the results indicate that the cement paste doped with MWCNTs obtained lower porosity and concentrated pore size distribution. The morphological structure was analyzed by field emission scanning electron microscopy (FESEM) and EDS. It is shown that MWCNTs act as bridges and networks across cracks and voids, which transfer the load in case of tension, and the interface bond strength between the nanotubes and matrix is very strong.
基金NSF of China !(#29773037 )NSF of Fujian province!(#E9910001 )opening project grant from the State Key Lab of phys. Chem.
文摘A novel ammonia synthesis catalyst, potassium-promoted ruthenium supported on carbon nanotubes, was developed. It was found that the Ru-K/carbon nanotubes catalyst had higher activity for ammonia synthesis (20.85 ml NH3/h/g-cat) than the Ru-K/fullerenes ( 13.3 ml NH3/h/g-cat) at atmospheric pressure and 623 K. The catalyst had activity even at 473 K, and had the highest activity( 23.46 ml NH3/h/g-cat) at 643 K. It was suggested that the multi-walled structure favored the electron transfer, the hydrogen-storage and the hydrogen-spill which were favorable to ammonia synthesis.
基金supported by the National Natural Science Foundation of China (No.50971020)the National High-Tech Research and Development Program of China (No.2009AA03Z116)
文摘Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.
文摘Cu based composites reinforced by 0%~25% (volume fraction) carbon nanotubes were prepared.The fracture behaviors and the rolling properties of the composites and the effects of the volume fraction of the carbon nanotubes were studied.The experimental results show that the fracture toughness of the composites is related to the pulling out and bridging of the carbon nanotubes in the fracture process.With the volume fraction of the carbon nanotubes increasing, the Vicker’s hardness and the compactness of the composites increase first and then decrease. The peaks of the hardness and the compactness occur at 12%~15% of volume fraction of carbon nanotubes.Some proper ratio of rolling reduction benefits to the comprehensive mechanical properties of the composites.
基金Acknowledgements We acknowledge supports from the National Natural Science Foundation of China (Nos. 51472173, 51522208 and 21472135), the Natural Science Foundation of Jiangsu Province (Nos. BK20140302 and SBK2015010320), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘The past decade has witnessed a rapid surge of interest in the research and development of non-precious metal-based electrocatalysts for the oxygen reduction reaction (ORR). Until now, the best catalysts in acidic electrolytes have exclusively been Fe-N-C-type materials from high-temperature pyrolysis. Despite the ORR activities of metal phthalocyanine or porphyrin macrocydes having long been known, their durability remains poor. In this work, we use these macrocycles as a basis to develop a novel organic-carbon hybrid material from in-situ polymerization of iron phthalocyanine on conductive multiwalled carbon nanotube scaffolds using a low-temperature microwave heating method. At an optimal polymer- to-carbon ratio, the hybrid electrocatalyst exhibits excellent ORR activity with a positive half-wave potential (0.80 V), large mass activity (up to 18.0 A/g at 0.80 V), and a low peroxide yield (〈3%). In addition, strong electronic coupling between the polymer and carbon nanotubes is believed to suppress demetallization of the macrocycles, significantly improving cycling stability in acids. Our study represents a rare example of non-precious metal-based electrocatalysts prepared without high-temperature pyrolysis, while having ORR activity in acidic media with potential for practical applications.