The formation characteristics of NO_x during combustion of four typical Chinese coals have been studied in a packed bed combustor. The studies included the effects of chemical composition of coals and volatile matters...The formation characteristics of NO_x during combustion of four typical Chinese coals have been studied in a packed bed combustor. The studies included the effects of chemical composition of coals and volatile matters, and combustion conditions, i.e. preheating temperatures of combustion gas, on conversion of NO_x during combustion. In term of the combustion experiments, there is a close relation between coal composition and conversions of NO_x. Coals with a higher nitrogen content give a lower F_(NO_x)~0, and coals with a higher volatile content give a lower F_(NO_x)~0. The further devolatilization experiments showed that volatile matters in the coal have an important effect on reducing conversion of coal-nitrogen to NO_x. It was interpreted as that the release of volatile matters during combustion caused a fuel-rich circumstance in the vicinity of coal particles which may restrain the formation of NO_x. Preheating temperatures of combustion gas has significant effects on conversions of NO_x and there exist a critical preheating temperature. At such temperature, lower F_(NO_x)~0 can be reached.展开更多
The effects of various combustion conditions (i. e. particle size of coals, oxygen concentration in combustion gas and coal content in the fuel bed, etc.), on reducing conversion of NO_x during coal combustion were st...The effects of various combustion conditions (i. e. particle size of coals, oxygen concentration in combustion gas and coal content in the fuel bed, etc.), on reducing conversion of NO_x during coal combustion were studied. Under the present combustion conditions, coals with smaller particle size gave the lower conversion of NO_x, and as expected that an decrease in overall stoichiometric ratio, whether by an decrease in O_2 content in combustion gas or by an increase in coal content in fuel bed would lead to a lower conversion of NO_x. In order to investigate the effect of metallic oxide layers on restraining NO_x formation, the combustion experiments for coal granules with adhering layer of various metallic oxides including Fe_2O_3, Ni_2O_3 and mixed oxides Fe-Ni-O_x were conducted in a packed bed combustor. The combustion experiments have shown that most of adhering materials gave considerable effect on reduction of NO_x emission during coal combustion.展开更多
文摘The formation characteristics of NO_x during combustion of four typical Chinese coals have been studied in a packed bed combustor. The studies included the effects of chemical composition of coals and volatile matters, and combustion conditions, i.e. preheating temperatures of combustion gas, on conversion of NO_x during combustion. In term of the combustion experiments, there is a close relation between coal composition and conversions of NO_x. Coals with a higher nitrogen content give a lower F_(NO_x)~0, and coals with a higher volatile content give a lower F_(NO_x)~0. The further devolatilization experiments showed that volatile matters in the coal have an important effect on reducing conversion of coal-nitrogen to NO_x. It was interpreted as that the release of volatile matters during combustion caused a fuel-rich circumstance in the vicinity of coal particles which may restrain the formation of NO_x. Preheating temperatures of combustion gas has significant effects on conversions of NO_x and there exist a critical preheating temperature. At such temperature, lower F_(NO_x)~0 can be reached.
文摘The effects of various combustion conditions (i. e. particle size of coals, oxygen concentration in combustion gas and coal content in the fuel bed, etc.), on reducing conversion of NO_x during coal combustion were studied. Under the present combustion conditions, coals with smaller particle size gave the lower conversion of NO_x, and as expected that an decrease in overall stoichiometric ratio, whether by an decrease in O_2 content in combustion gas or by an increase in coal content in fuel bed would lead to a lower conversion of NO_x. In order to investigate the effect of metallic oxide layers on restraining NO_x formation, the combustion experiments for coal granules with adhering layer of various metallic oxides including Fe_2O_3, Ni_2O_3 and mixed oxides Fe-Ni-O_x were conducted in a packed bed combustor. The combustion experiments have shown that most of adhering materials gave considerable effect on reduction of NO_x emission during coal combustion.