The aeroelastic analysis of high-altitude, long-endurance (HALE) aircraft that features high-aspect-ratio flexible wings needs take into account structural geometrical nonlinearities and dynamic stall. For a generic...The aeroelastic analysis of high-altitude, long-endurance (HALE) aircraft that features high-aspect-ratio flexible wings needs take into account structural geometrical nonlinearities and dynamic stall. For a generic nonlinear aeroelastic system, besides the stability boundary, the characteristics of the limit-cycle oscillation (LCO) should also be accurately predicted. In order to conduct nonlinear aeroelastic analysis of high-aspect-ratio flexible wings, a first-order, state-space model is developed by combining a geometrically exact, nonlinear anisotropic beam model with nonlinear ONERA (Edlin) dynamic stall model. The present investigations focus on the initiation and sustaining mechanism of the LCO and the effects of flight speed and drag on aeroelastic behaviors. Numerical results indicate that structural geometrical nonlinearities could lead to the LCO without stall occurring. As flight speed increases, dynamic stall becomes dominant and the LCO increasingly complicated. Drag could be negligible for LCO type, but should be considered to exactly predict the onset speed of flutter or LCO of high-aspect-ratio flexible wings.展开更多
The majority of topology optimization of compliant mechanisms uses linear finite element models to find the structure responses.Because the displacements of compliant mechanisms are intrinsically large,the topological...The majority of topology optimization of compliant mechanisms uses linear finite element models to find the structure responses.Because the displacements of compliant mechanisms are intrinsically large,the topological design can not provide quantitatively accurate result.Thus,topological design of these mechanisms considering geometrical nonlinearities is essential.A new methodology for geometrical nonlinear topology optimization of compliant mechanisms under displacement loading is presented.Frame elements are chosen to represent the design domain because they are capable of capturing the bending modes.Geometrically nonlinear structural response is obtained by using the co-rotational total Lagrange finite element formulation,and the equilibrium is solved by using the incremental scheme combined with Newton-Raphson iteration.The multi-objective function is developed by the minimum strain energy and maximum geometric advantage to design the mechanism which meets both stiffness and flexibility requirements, respectively.The adjoint method and the direct differentiation method are applied to obtain the sensitivities of the objective functions. The method of moving asymptotes(MMA) is employed as optimizer.The numerical example is simulated to show that the optimal mechanism based on geometrically nonlinear formulation not only has more flexibility and stiffness than that based on linear formulation,but also has better stress distribution than the one.It is necessary to design compliant mechanisms using geometrically nonlinear topology optimization.Compared with linear formulation,the formulation for geometrically nonlinear topology optimization of compliant mechanisms can give the compliant mechanism that has better mechanical performance.A new method is provided for topological design of large displacement compliant mechanisms.展开更多
A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of i...A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs) are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.展开更多
In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel ada...In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.展开更多
TeOx-SiO2 composite films having third-order nonlinearities were prepared by electrochemically induced sol-gel deposition method on ITO substrate.The third-order optical nonlinearities of the films were measured by Z-...TeOx-SiO2 composite films having third-order nonlinearities were prepared by electrochemically induced sol-gel deposition method on ITO substrate.The third-order optical nonlinearities of the films were measured by Z-scan technique.The third-order nonlinear susceptibilities(χ^((3))) of the as-prepared films are 5.9×10^(-7) to 4.29×10^(-6)esu.The surface morphology and composition of the films were characterized by SEM/EDX,which identified that Te metallic particles well dispersed in TeO_x-SiO_2 gel films.展开更多
The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means o...The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.展开更多
The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup&g...The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup>th</sup>. Undoubtedly, the solution of nonlinear differential equations using ADM is presided over by the acquisition of Adomian polynomials, which are not always easy to find. Thus, the present study proposes easy-to-implement Maple programs for the computation of Adomian polynomials. In fact, the proposed algorithms performed remarkably on several test functions, consisting of one- and multi-variable nonlinearities. Moreover, the introduced programs are advantageous in terms of simplicity;coupled with the requirement of less computational time in comparison with what is known in the literature.展开更多
Transonic rudder buzz responses based on the computational fluid dynamics or computational structural dynamics(CFD/CSD)loosely method are analyzed for a tailless flying wing unmanned aerial vehicle(UAV).The Reynolds-a...Transonic rudder buzz responses based on the computational fluid dynamics or computational structural dynamics(CFD/CSD)loosely method are analyzed for a tailless flying wing unmanned aerial vehicle(UAV).The Reynolds-averaged Navier-Stokes(RANS)equations and finite element methods based on the detailed aerodynamic and structural model are established,in which the aerodynamic dynamic meshes adopt the unstructured dynamic meshes based on the combination of spring-based smoothing and local remeshing methods,and the lower-upper symmetric-Gauss-Seidel(LU-SGS)iteration and Harten-Lax-van Leer-Einfeldt-Wada(HLLEW)space discrete methods based on the shear stress transport(SST)turbulence model are used to calculate the aerodynamic force.The constraints of the rudder motions are fixed at the end of structural model of the flying wing UAV,and the structural geometric nonlinearities are also considered in the flying wing UAV with a high aspect ratio.The interfaces between structural and aerodynamic models are built with an exact match surface where load transferring is performed based on 3Dinterpolation.The flying wing UAV transonic buzz responses based on the aerodynamic structural coupling method are studied,and the rudder buzz responses and aileron,elevator and flap vibration responses caused by rudder motion are also investigated.The effects of attack,height,rotating angular frequency and Mach number under transonic conditions on the flying wing UAV rudder buzz responses are discussed.The results can be regarded as a reference for the flying wing UAV engineering vibration analysis.展开更多
基金National Natural Science Foundation of China (10272012)
文摘The aeroelastic analysis of high-altitude, long-endurance (HALE) aircraft that features high-aspect-ratio flexible wings needs take into account structural geometrical nonlinearities and dynamic stall. For a generic nonlinear aeroelastic system, besides the stability boundary, the characteristics of the limit-cycle oscillation (LCO) should also be accurately predicted. In order to conduct nonlinear aeroelastic analysis of high-aspect-ratio flexible wings, a first-order, state-space model is developed by combining a geometrically exact, nonlinear anisotropic beam model with nonlinear ONERA (Edlin) dynamic stall model. The present investigations focus on the initiation and sustaining mechanism of the LCO and the effects of flight speed and drag on aeroelastic behaviors. Numerical results indicate that structural geometrical nonlinearities could lead to the LCO without stall occurring. As flight speed increases, dynamic stall becomes dominant and the LCO increasingly complicated. Drag could be negligible for LCO type, but should be considered to exactly predict the onset speed of flutter or LCO of high-aspect-ratio flexible wings.
基金supported by National Science Foundation for Distinguished Young Scholars of China(Grant No.50825504)National Natural Science Foundation of China(Grant No.50775073)United Fund of Natural Science Foundation of China and Guangdong Province (Grant No.U0934004)
文摘The majority of topology optimization of compliant mechanisms uses linear finite element models to find the structure responses.Because the displacements of compliant mechanisms are intrinsically large,the topological design can not provide quantitatively accurate result.Thus,topological design of these mechanisms considering geometrical nonlinearities is essential.A new methodology for geometrical nonlinear topology optimization of compliant mechanisms under displacement loading is presented.Frame elements are chosen to represent the design domain because they are capable of capturing the bending modes.Geometrically nonlinear structural response is obtained by using the co-rotational total Lagrange finite element formulation,and the equilibrium is solved by using the incremental scheme combined with Newton-Raphson iteration.The multi-objective function is developed by the minimum strain energy and maximum geometric advantage to design the mechanism which meets both stiffness and flexibility requirements, respectively.The adjoint method and the direct differentiation method are applied to obtain the sensitivities of the objective functions. The method of moving asymptotes(MMA) is employed as optimizer.The numerical example is simulated to show that the optimal mechanism based on geometrically nonlinear formulation not only has more flexibility and stiffness than that based on linear formulation,but also has better stress distribution than the one.It is necessary to design compliant mechanisms using geometrically nonlinear topology optimization.Compared with linear formulation,the formulation for geometrically nonlinear topology optimization of compliant mechanisms can give the compliant mechanism that has better mechanical performance.A new method is provided for topological design of large displacement compliant mechanisms.
基金supported by the National Natural Science Foundation of China(Nos.61473307 and 61304120)the Aeronautical Science Foundation of China(No. 20155896026)
文摘A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs) are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.
基金supported by the National Natural Science Foundation of China(Grant Nos.61304193&U1564208)National Key R&D Program of China(Grant No.2016YFB0100900)
文摘In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally,simulation test is exploited to demonstrate the effectiveness of the proposed control approach.
基金supported by Academic Program of Natural Science Foundation Project of CQ CSTC(No 2008BC4003)the Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University(No2007)
文摘TeOx-SiO2 composite films having third-order nonlinearities were prepared by electrochemically induced sol-gel deposition method on ITO substrate.The third-order optical nonlinearities of the films were measured by Z-scan technique.The third-order nonlinear susceptibilities(χ^((3))) of the as-prepared films are 5.9×10^(-7) to 4.29×10^(-6)esu.The surface morphology and composition of the films were characterized by SEM/EDX,which identified that Te metallic particles well dispersed in TeO_x-SiO_2 gel films.
基金supported by NSFC(10771085)Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Educationthe 985 Program of Jilin University
文摘The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.
基金supported in part by National Natural Science Foundation of China(61573108,61273192,61333013)the Ministry of Education of New Century Excellent Talent(NCET-12-0637)+1 种基金Natural Science Foundation of Guangdong Province through the Science Fund for Distinguished Young Scholars(S20120011437)Doctoral Fund of Ministry of Education of China(20124420130001)
文摘The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup>th</sup>. Undoubtedly, the solution of nonlinear differential equations using ADM is presided over by the acquisition of Adomian polynomials, which are not always easy to find. Thus, the present study proposes easy-to-implement Maple programs for the computation of Adomian polynomials. In fact, the proposed algorithms performed remarkably on several test functions, consisting of one- and multi-variable nonlinearities. Moreover, the introduced programs are advantageous in terms of simplicity;coupled with the requirement of less computational time in comparison with what is known in the literature.
基金supported by the Natural Science Foundation of China(No.61074155)the Shaanxi Provincial Natural Science Foundation of China(No.2013JM015)
文摘Transonic rudder buzz responses based on the computational fluid dynamics or computational structural dynamics(CFD/CSD)loosely method are analyzed for a tailless flying wing unmanned aerial vehicle(UAV).The Reynolds-averaged Navier-Stokes(RANS)equations and finite element methods based on the detailed aerodynamic and structural model are established,in which the aerodynamic dynamic meshes adopt the unstructured dynamic meshes based on the combination of spring-based smoothing and local remeshing methods,and the lower-upper symmetric-Gauss-Seidel(LU-SGS)iteration and Harten-Lax-van Leer-Einfeldt-Wada(HLLEW)space discrete methods based on the shear stress transport(SST)turbulence model are used to calculate the aerodynamic force.The constraints of the rudder motions are fixed at the end of structural model of the flying wing UAV,and the structural geometric nonlinearities are also considered in the flying wing UAV with a high aspect ratio.The interfaces between structural and aerodynamic models are built with an exact match surface where load transferring is performed based on 3Dinterpolation.The flying wing UAV transonic buzz responses based on the aerodynamic structural coupling method are studied,and the rudder buzz responses and aileron,elevator and flap vibration responses caused by rudder motion are also investigated.The effects of attack,height,rotating angular frequency and Mach number under transonic conditions on the flying wing UAV rudder buzz responses are discussed.The results can be regarded as a reference for the flying wing UAV engineering vibration analysis.