Background:Pulmonary hypertension(PH)represents a threatening pathophysiologic state that can be induced by chronic hypoxia and is characterized by extensive vascular remodeling.However,the mechanism underlying hypoxi...Background:Pulmonary hypertension(PH)represents a threatening pathophysiologic state that can be induced by chronic hypoxia and is characterized by extensive vascular remodeling.However,the mechanism underlying hypoxia-induced vascular remodeling is not fully elucidated.Methods and Results:By using quantitative polymerase chain reactions,western blotting,and immunohistochemistry,we demon-strate that the expression of N-myc downstream regulated gene-1(NDRG1)is markedly increased in hypoxia-stimulated endothelial cells in a time-dependent manner as well as in human and rat endothelium lesions.To determine the role of NDRG1 in endothelial dysfunction,we performed loss-of-function studies using NDRG1 short hairpin RNAs and NDRG1 over-expression plasmids.In vitro,silencing NDRG1 attenuated proliferation,migration,and tube formation of human pulmonary artery endothelial cells(HPAECs)un-der hypoxia,while NDRG1 over-expression promoted these behaviors of HPAECs.Mechanistically,NDRG1 can directly interact with TATA-box binding protein associated factor 15(TAF15)and promote its nuclear localization.Knockdown of TAF15 abrogated the effect of NDRG1 on the proliferation,migration and tube formation capacity of HPAECs.Bioinformatics studies found that TAF15 was involved in regulating PI3K-Akt,p53,and hypoxia-inducible factor 1(HIF-1)signaling pathways,which have been proved to be PH-related pathways.In addition,vascular remodeling and right ventricular hypertrophy induced by hypoxia were markedly alleviated in NDRG1 knock-down rats compared with their wild-type littermates.Conclusions:Taken together,our results indicate that hypoxia-induced upregulation of NDRG1 contributes to endothelial dysfunction through targeting TAF15,which ultimately contributes to the development of hypoxia-induced PH.展开更多
BACKGROUND The N-Myc downstream-regulated gene(NDRG)family is comprised of four members(NDRG1-4)involved in various important biological processes.However,there is no systematic evaluation of the prognostic of the NDR...BACKGROUND The N-Myc downstream-regulated gene(NDRG)family is comprised of four members(NDRG1-4)involved in various important biological processes.However,there is no systematic evaluation of the prognostic of the NDRG family in hepatocellular carcinoma(HCC).AIM To analyze comprehensively the biological role of the NDRG family in HCC.METHODS The NDRG family expression was explored using The Cancer Genome Atlas.DNA methylation interactive visualization database was used for methylation analysis of the NDRG family.The NDRG family genomic alteration was assessed using the cBioPortal.Single-sample Gene Set Enrichment Analysis was used to determine the degree of immune cell infiltration in tumors.RESULTS NDRG1 and NDRG3 were up-regulated in HCC,while NDRG2 was down-regulated.Consistent with expression patterns,high expression of NDRG1 and NDRG3 was associated with poor survival outcomes(P<0.05).High expression of NDRG2 was associated with favorable survival(P<0.005).An NDRG-based signature that statistically stratified the prognosis of the patients was constructed.The percentage of genetic alterations in the NDRG family varied from 0.3%to 11.0%,and the NDRG1 mutation rate was the highest.NDRG 1-3 expression was associated with various types of infiltrated immune cells.Gene ontology analysis revealed that organic acid catabolism was the most important biological process related to the NDRG family.Gene Set Enrichment Analysis showed that metabolic,proliferation,and immune-related gene sets were enriched during NDRG1 and NDRG3 high expression and NDRG2 low expression.CONCLUSION Overexpression of NDRG1 and NDRG3 and down-expression of NDRG2 are correlated with poor overall HCC prognosis.Our results may provide new insights into the indispensable role of NDRG1,2,and 3 in the development of HCC and guide a promising new strategy for treating HCC.展开更多
BACKGROUND Invasion and migration are the irreversible stages of colorectal cancer(CRC).The key is to find a sensitive,reliable molecular marker that can predict the migration of CRC at an early stage.N-myc downstream...BACKGROUND Invasion and migration are the irreversible stages of colorectal cancer(CRC).The key is to find a sensitive,reliable molecular marker that can predict the migration of CRC at an early stage.N-myc downstream regulated gene 1(NDRG1)is a multifunctional gene that has been tentatively reported to have a strong relationship with tumor invasion and migration,however the current molecular role of NDRG1 in CRC remains unknown.AIM To explore the role of NDRG1 in the development of CRC.METHODS NDRG1 stably over-expressed Caco2 cell line was established by lentiviral infection and NDRG1 knock-out Caco2 cell line was established by CRISPR/Cas9.Furthermore,the mRNA and protein levels of NDRG1 in Caco2 cells after NDRG1 over-expression and knockout were detected by real-time polymerase chain reaction and western blot.The cell proliferation rate was measured by the cell counting kit-8 method;cell cycle and apoptosis were detected by flow cytometry;invasion and migration ability were detected by the 24-transwell method.RESULTS NDRG1 over-expression inhibited Caco2 proliferation and the cell cycle could be arrested at the G1/S phase when NDRG1 was over-expressed,while the number of cells in the G2 phase was significantly increased when NDRG1 was knocked out.This suggests that NDRG1 inhibited the proliferation of Caco2 cells by arresting the cell cycle in the G1/S phase.Our data also demonstrated that NDRG1 promotes early cell apoptosis.Invasion and migration of cells were extensively inhibited when NDRG1 was over-expressed.CONCLUSION NDRG1 inhibits tumor progression in Caco2 cells which may represent a potential novel therapeutic strategy for the treatment of CRC.展开更多
Objective To investigate N-myc downstream-regulated gene 2(NDRG2) expression in ovarian cancer cells and its potential usefulness as a diagnostic marker and/or target for therapeutic intervention.Methods Human NDRG2 L...Objective To investigate N-myc downstream-regulated gene 2(NDRG2) expression in ovarian cancer cells and its potential usefulness as a diagnostic marker and/or target for therapeutic intervention.Methods Human NDRG2 L/S gene was obtained by revers-transcription polymerase chain reaction(RT-PCR). Sequence analysis confirmed the identity of NDRG2 L/S gene, which was then inserted into a eukaryotic vector p LNCX2, which was in turn transfected into NDRG2 gene-negative HO-8910 cells. Flow cytometry(FCM) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide(MTT) assay were conducted to determine the proliferation rate of HO-8910 cells. Cisplatin resistance of HO-8910 cells transfected with p LNCX2-NDRG2 L/S was evaluated by FCM. Tumors were generated in female nude mice by subcutaneous injection of HO-8910 cells.Results NDRG2 gene was isolated and its expression vector was successfully constructed. NDRG2 expression positively correlated with the proliferation of HO-8910 cells. NDRG2 L/S promoted tumorigenicity in HO-8910 cells.Conclusion The present study identified a novel function of NDRG2 L/S gene and demonstrated its involvement in the promotion of ovarian cancer cell proliferation and enhancement of cisplatin resistance in HO-8910 cells. Future studies are warranted to determine the relationship between NDRG2 upregulation and ovarian cancer progression.展开更多
Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enh...Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gill and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.展开更多
Objective:the N-myc downstream regulatory gene 4(NDRG4)is involved in cell growth,cell proliferation,cell survival and tumor invasion.In this paper,the role of NDRG4 in glioma was explored.Method:the expression of NDR...Objective:the N-myc downstream regulatory gene 4(NDRG4)is involved in cell growth,cell proliferation,cell survival and tumor invasion.In this paper,the role of NDRG4 in glioma was explored.Method:the expression of NDRG4 in glioma clinical specimens and its relationship with the prognosis of glioma patients were analyzed by the Cancer Genome Atlas(TCGA)and the Chinese Glioma Genome Atlas(CGGA),and the expression of NDRG4 protein and mRNA in glioma cell lines were tested and verified by Western blot and quantitative real-time fluorescence polymerase chain reaction(qRT-PCR).Result:it showed that the expression of NDRG4 in glioma tissues and cell lines is closely related to the prognosis of glioma patients.Conclusion:NDRG4 is a highly potential target gene for glioma therapy.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.81970048,82270058)starting fund for scientific research of Huashan Hospital Fudan University(Grant No.2017QD078).
文摘Background:Pulmonary hypertension(PH)represents a threatening pathophysiologic state that can be induced by chronic hypoxia and is characterized by extensive vascular remodeling.However,the mechanism underlying hypoxia-induced vascular remodeling is not fully elucidated.Methods and Results:By using quantitative polymerase chain reactions,western blotting,and immunohistochemistry,we demon-strate that the expression of N-myc downstream regulated gene-1(NDRG1)is markedly increased in hypoxia-stimulated endothelial cells in a time-dependent manner as well as in human and rat endothelium lesions.To determine the role of NDRG1 in endothelial dysfunction,we performed loss-of-function studies using NDRG1 short hairpin RNAs and NDRG1 over-expression plasmids.In vitro,silencing NDRG1 attenuated proliferation,migration,and tube formation of human pulmonary artery endothelial cells(HPAECs)un-der hypoxia,while NDRG1 over-expression promoted these behaviors of HPAECs.Mechanistically,NDRG1 can directly interact with TATA-box binding protein associated factor 15(TAF15)and promote its nuclear localization.Knockdown of TAF15 abrogated the effect of NDRG1 on the proliferation,migration and tube formation capacity of HPAECs.Bioinformatics studies found that TAF15 was involved in regulating PI3K-Akt,p53,and hypoxia-inducible factor 1(HIF-1)signaling pathways,which have been proved to be PH-related pathways.In addition,vascular remodeling and right ventricular hypertrophy induced by hypoxia were markedly alleviated in NDRG1 knock-down rats compared with their wild-type littermates.Conclusions:Taken together,our results indicate that hypoxia-induced upregulation of NDRG1 contributes to endothelial dysfunction through targeting TAF15,which ultimately contributes to the development of hypoxia-induced PH.
文摘BACKGROUND The N-Myc downstream-regulated gene(NDRG)family is comprised of four members(NDRG1-4)involved in various important biological processes.However,there is no systematic evaluation of the prognostic of the NDRG family in hepatocellular carcinoma(HCC).AIM To analyze comprehensively the biological role of the NDRG family in HCC.METHODS The NDRG family expression was explored using The Cancer Genome Atlas.DNA methylation interactive visualization database was used for methylation analysis of the NDRG family.The NDRG family genomic alteration was assessed using the cBioPortal.Single-sample Gene Set Enrichment Analysis was used to determine the degree of immune cell infiltration in tumors.RESULTS NDRG1 and NDRG3 were up-regulated in HCC,while NDRG2 was down-regulated.Consistent with expression patterns,high expression of NDRG1 and NDRG3 was associated with poor survival outcomes(P<0.05).High expression of NDRG2 was associated with favorable survival(P<0.005).An NDRG-based signature that statistically stratified the prognosis of the patients was constructed.The percentage of genetic alterations in the NDRG family varied from 0.3%to 11.0%,and the NDRG1 mutation rate was the highest.NDRG 1-3 expression was associated with various types of infiltrated immune cells.Gene ontology analysis revealed that organic acid catabolism was the most important biological process related to the NDRG family.Gene Set Enrichment Analysis showed that metabolic,proliferation,and immune-related gene sets were enriched during NDRG1 and NDRG3 high expression and NDRG2 low expression.CONCLUSION Overexpression of NDRG1 and NDRG3 and down-expression of NDRG2 are correlated with poor overall HCC prognosis.Our results may provide new insights into the indispensable role of NDRG1,2,and 3 in the development of HCC and guide a promising new strategy for treating HCC.
基金the National Natural Science Foundation of China,No.81260361Incubation Project of Mianyang Central Hospital,No.2020FH05.
文摘BACKGROUND Invasion and migration are the irreversible stages of colorectal cancer(CRC).The key is to find a sensitive,reliable molecular marker that can predict the migration of CRC at an early stage.N-myc downstream regulated gene 1(NDRG1)is a multifunctional gene that has been tentatively reported to have a strong relationship with tumor invasion and migration,however the current molecular role of NDRG1 in CRC remains unknown.AIM To explore the role of NDRG1 in the development of CRC.METHODS NDRG1 stably over-expressed Caco2 cell line was established by lentiviral infection and NDRG1 knock-out Caco2 cell line was established by CRISPR/Cas9.Furthermore,the mRNA and protein levels of NDRG1 in Caco2 cells after NDRG1 over-expression and knockout were detected by real-time polymerase chain reaction and western blot.The cell proliferation rate was measured by the cell counting kit-8 method;cell cycle and apoptosis were detected by flow cytometry;invasion and migration ability were detected by the 24-transwell method.RESULTS NDRG1 over-expression inhibited Caco2 proliferation and the cell cycle could be arrested at the G1/S phase when NDRG1 was over-expressed,while the number of cells in the G2 phase was significantly increased when NDRG1 was knocked out.This suggests that NDRG1 inhibited the proliferation of Caco2 cells by arresting the cell cycle in the G1/S phase.Our data also demonstrated that NDRG1 promotes early cell apoptosis.Invasion and migration of cells were extensively inhibited when NDRG1 was over-expressed.CONCLUSION NDRG1 inhibits tumor progression in Caco2 cells which may represent a potential novel therapeutic strategy for the treatment of CRC.
文摘目的:研究N-MYC基因拷贝数在神经母细胞源性肿瘤(neuroblastic tumors,NTs)患者中的异常改变及其临床病理学意义。方法:收集483例NTs患儿肿瘤组织标本,其中包括神经母细胞瘤(neuroblastoma,NB)388例、节细胞神经母细胞瘤(ganglioneuroblastoma,GNB)89例、节细胞神经瘤(ganglioneuroma,GN)6例。运用荧光原位杂交技术(fluorescence in situ hybridization,FISH)检测N-MYC基因拷贝数改变。考察N-MYC基因拷贝数改变与临床病理学特征的关系并进行生存分析。结果:483例NTs患儿N-MYC基因扩增率为12.4%。N-MYC基因扩增均发生在NB中,而在GNB及GN中未见其扩增(P<0.05)。N-MYC基因拷贝数改变更易发生在低分化程度的NB中(P=0.01),且随着分化程度降低,N-MYC基因扩增率增加。男性患儿N-MYC基因拷贝数改变的发生率多于女性患儿(P=0.05)。患儿年龄≤18个月者N-MYC基因扩增率有低于>18个月者的趋势(P=0.092)。生存分析显示:N-MYC基因扩增组患儿生存率明显低于获得组及正常组。结论:NTs患儿N-MYC基因扩增与NTs的类型、分化程度、性别、年龄及生存密切相关。本研究为NTs患者的诊断、治疗及预后提供可靠的参考和帮助。
文摘Objective To investigate N-myc downstream-regulated gene 2(NDRG2) expression in ovarian cancer cells and its potential usefulness as a diagnostic marker and/or target for therapeutic intervention.Methods Human NDRG2 L/S gene was obtained by revers-transcription polymerase chain reaction(RT-PCR). Sequence analysis confirmed the identity of NDRG2 L/S gene, which was then inserted into a eukaryotic vector p LNCX2, which was in turn transfected into NDRG2 gene-negative HO-8910 cells. Flow cytometry(FCM) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide(MTT) assay were conducted to determine the proliferation rate of HO-8910 cells. Cisplatin resistance of HO-8910 cells transfected with p LNCX2-NDRG2 L/S was evaluated by FCM. Tumors were generated in female nude mice by subcutaneous injection of HO-8910 cells.Results NDRG2 gene was isolated and its expression vector was successfully constructed. NDRG2 expression positively correlated with the proliferation of HO-8910 cells. NDRG2 L/S promoted tumorigenicity in HO-8910 cells.Conclusion The present study identified a novel function of NDRG2 L/S gene and demonstrated its involvement in the promotion of ovarian cancer cell proliferation and enhancement of cisplatin resistance in HO-8910 cells. Future studies are warranted to determine the relationship between NDRG2 upregulation and ovarian cancer progression.
基金funded by the National Natural Science Foundation of China,No.81171401Science and Technology Development Program of Dalian City,No.2008J99JH268the Scientific Research Program of Higher Learning School of Department of Education of Liaoning Province,No.L20100108
文摘Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gill and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.
文摘Objective:the N-myc downstream regulatory gene 4(NDRG4)is involved in cell growth,cell proliferation,cell survival and tumor invasion.In this paper,the role of NDRG4 in glioma was explored.Method:the expression of NDRG4 in glioma clinical specimens and its relationship with the prognosis of glioma patients were analyzed by the Cancer Genome Atlas(TCGA)and the Chinese Glioma Genome Atlas(CGGA),and the expression of NDRG4 protein and mRNA in glioma cell lines were tested and verified by Western blot and quantitative real-time fluorescence polymerase chain reaction(qRT-PCR).Result:it showed that the expression of NDRG4 in glioma tissues and cell lines is closely related to the prognosis of glioma patients.Conclusion:NDRG4 is a highly potential target gene for glioma therapy.