Soil organic matter (SOM) content is one of the main factors to be considered in the evaluation of soil health and fertility. As timing, human and monetary resources often limit the amount of available data, geostatis...Soil organic matter (SOM) content is one of the main factors to be considered in the evaluation of soil health and fertility. As timing, human and monetary resources often limit the amount of available data, geostatistical techniques provide a valid scientific approach to cope with spatial variability, to interpolate existing data and to predict values at unsampled locations for accurate SOM status survey. Using geostatistical and geographic information system (GIS) approaches, the spatial variability of some physical and chemical soil parameters was investigated under Mediterranean climatic condition in the Abruzzo region of central Italy, where soil erosion processes accelerated by human induced factors are the main causes of soil degradation associated with low SOM content. Experimental semivariograms were established to determine the spatial dependence of the soil variables under investigation. The results of 250 soil sampling point data were interpolated by means of ordinary kriging coupled with a GIS to produce contour maps distribution of soil texture, SOM content related to texture, and C/N ratio. The resulting spatial interpolation of the dataset highlighted a low content of SOM in relation with soil texture in most of the surveyed area (87%) and an optimal C/N ratio for only half of the investigated surface area. Spatial location of degraded area and the assessment of its magnitude can provide decision makers with an accurate support to design appropriate soil conservation strategies and then facilitate a regional planning of agri-environmental measures in the framework of the European Common Agricultural Policy.展开更多
The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite ...The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite accumulates obviously at different initial nitrate concentrations (64.9,54.8,49.3 and 29.5 mg·L^-1 ) and low temperatures, and the two break points on the oxidation-reduction potential (ORP) profile indicate the completion of nitrate and nitrite reduction. Usually, the nitrate reduction rate is used as the sole parameter to characterize the denitrification rate, and nitrite is not even measured. For accuracy, the total oxidized nitrogen (nitrate + nitrite) is used as a measure, though details characterizing the process may be overlooked. Additionally, batch tests are conducted to investigate the effects of C/N ratios and types of carbon sources on the nitrite accumulation during the denitrification. It is observed that carbon source is sufficient for the reduction of nitrate to nitrite, but for further reduction of nitrite to nitrogen gas, is deficient when C/N is below the theoretical critical level of 3.75 based on the stoichiometry of denitrification. Five carbon sources used in this work, except for glucose, may cause the nitrite accumulation. From experimental results and cited literature, it is concluded that Alcaligene species may be contained in the SBR activated-sludge system.展开更多
基金Supported by the Italian Ministry of Agricultural, Food and Forestry Policies (No. DM 19366)
文摘Soil organic matter (SOM) content is one of the main factors to be considered in the evaluation of soil health and fertility. As timing, human and monetary resources often limit the amount of available data, geostatistical techniques provide a valid scientific approach to cope with spatial variability, to interpolate existing data and to predict values at unsampled locations for accurate SOM status survey. Using geostatistical and geographic information system (GIS) approaches, the spatial variability of some physical and chemical soil parameters was investigated under Mediterranean climatic condition in the Abruzzo region of central Italy, where soil erosion processes accelerated by human induced factors are the main causes of soil degradation associated with low SOM content. Experimental semivariograms were established to determine the spatial dependence of the soil variables under investigation. The results of 250 soil sampling point data were interpolated by means of ordinary kriging coupled with a GIS to produce contour maps distribution of soil texture, SOM content related to texture, and C/N ratio. The resulting spatial interpolation of the dataset highlighted a low content of SOM in relation with soil texture in most of the surveyed area (87%) and an optimal C/N ratio for only half of the investigated surface area. Spatial location of degraded area and the assessment of its magnitude can provide decision makers with an accurate support to design appropriate soil conservation strategies and then facilitate a regional planning of agri-environmental measures in the framework of the European Common Agricultural Policy.
基金Supported by the National Natural Science Foundation of China (50978003), the Natural Science Foundation of Beijing (8091001), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR 20090502), and the State Key Laboratory of Urban Water Resource and Environment (HIT) (QAK200802).
文摘The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite accumulates obviously at different initial nitrate concentrations (64.9,54.8,49.3 and 29.5 mg·L^-1 ) and low temperatures, and the two break points on the oxidation-reduction potential (ORP) profile indicate the completion of nitrate and nitrite reduction. Usually, the nitrate reduction rate is used as the sole parameter to characterize the denitrification rate, and nitrite is not even measured. For accuracy, the total oxidized nitrogen (nitrate + nitrite) is used as a measure, though details characterizing the process may be overlooked. Additionally, batch tests are conducted to investigate the effects of C/N ratios and types of carbon sources on the nitrite accumulation during the denitrification. It is observed that carbon source is sufficient for the reduction of nitrate to nitrite, but for further reduction of nitrite to nitrogen gas, is deficient when C/N is below the theoretical critical level of 3.75 based on the stoichiometry of denitrification. Five carbon sources used in this work, except for glucose, may cause the nitrite accumulation. From experimental results and cited literature, it is concluded that Alcaligene species may be contained in the SBR activated-sludge system.