The power grid with large proportion of hydropower may engage the ultra-low frequency oscillation (ULFO),which threatening the operation of system.To the NY Power Grid system,whose dimension is over thousands,this pap...The power grid with large proportion of hydropower may engage the ultra-low frequency oscillation (ULFO),which threatening the operation of system.To the NY Power Grid system,whose dimension is over thousands,this paper reveals the cause of ULFO with the phase portrait method,i.e.,lies in the saturation of the different limits of the governor system of the generators,in other words,the occurrence of limit cycle is due to the non-smooth bifurcation.And furthermore,it proposes two methods to suppress ULFO with the philosophy of destroying the condition of non-smooth bifurcation.In detail,first,the phenomenon of ULFO in NY Power Grid,the damping characteristics and the limits in the governor system of the hydropower units are presented.Second,based on the non-smooth bifurcation theory,the mathematical basis of the oscillation in the non-smooth system caused by the saturation of limits is introduced.And then,the non-oscillation and oscillation dynamic of the system corresponding to without/with limits in the governor system are analyzed.Furthermore,it discusses the influence of the saturation of single limit on the characteristics of ULFO with the phase portraits.Moreover,the phase portraits of the ULFO under different faults is analyzed,and it shows that the limiting saturation occurs with a large enough disturbance.Thus,the ULFO is resulting from the negative damping of generation and the saturation of multiple limits under a large enough disturbance.In addition,according to the above mechanism,two strategies to suppress the ULFO,i.e.,the governor parameters tuning and the fault strength relief are designed.The simulation shows the effectiveness of proposed strategies.展开更多
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and eros...Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 1376s technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline 展开更多
Bio-organic fertilizers enriched with plant growth-promoting microbes(PGPMs)have been widely used in crop fields to promote plant growth and maintain soil microbiome functions.However,their potential effects on N_(2)O...Bio-organic fertilizers enriched with plant growth-promoting microbes(PGPMs)have been widely used in crop fields to promote plant growth and maintain soil microbiome functions.However,their potential effects on N_(2)O emissions are of increasing concern.In this study,an in situ measurement experiment was conducted to investigate the effect of organic fertilizer containing Trichoderma guizhouense(a plant growth-promoting fungus)on soil N_(2)O emissions from a greenhouse vegetable field.The following four treatments were used:no fertilizer(control),chemical fertilizer(NPK),organic fertilizer derived from cattle manure(O),and organic fertilizer containing T.guizhouense(O+T,referring to bio-organic fertilizer).The abundances of soil N cycling-related functional genes(amoA)from ammonium-oxidizing bacteria(AOB)and archaea(AOA),as well as nirS,nirK,and nosZ,were simultaneously determined using quantitative PCR(qPCR).Compared to the NPK plot,seasonal total N_(2)O emissions decreased by 11.7%and 18.7%in the O and O+T plots,respectively,which was attributed to lower NH_(4)^(+)-N content and AOB amoA abundance in the O and O+T plots.The nosZ abundance was significantly greater in the O+T plot,whilst the AOB amoA abundance was significantly lower in the O+T plot than in the O plot.Relative to the organic fertilizer,bio-organic fertilizer application tended to decrease N_(2)O emissions by 7.9%and enhanced vegetable yield,resulting in a significant decrease in yield-scaled N_(2)O emissions.Overall,the results of this study suggested that,compared to organic and chemical fertilizers,bio-organic fertilizers containing PGPMs could benefit crop yield and mitigate N_(2)O emissions in vegetable fields.展开更多
基金National Natural Science Foundation of China (Nos. 51477050, 50707035) and 111 plan (No. B08013).
文摘The power grid with large proportion of hydropower may engage the ultra-low frequency oscillation (ULFO),which threatening the operation of system.To the NY Power Grid system,whose dimension is over thousands,this paper reveals the cause of ULFO with the phase portrait method,i.e.,lies in the saturation of the different limits of the governor system of the generators,in other words,the occurrence of limit cycle is due to the non-smooth bifurcation.And furthermore,it proposes two methods to suppress ULFO with the philosophy of destroying the condition of non-smooth bifurcation.In detail,first,the phenomenon of ULFO in NY Power Grid,the damping characteristics and the limits in the governor system of the hydropower units are presented.Second,based on the non-smooth bifurcation theory,the mathematical basis of the oscillation in the non-smooth system caused by the saturation of limits is introduced.And then,the non-oscillation and oscillation dynamic of the system corresponding to without/with limits in the governor system are analyzed.Furthermore,it discusses the influence of the saturation of single limit on the characteristics of ULFO with the phase portraits.Moreover,the phase portraits of the ULFO under different faults is analyzed,and it shows that the limiting saturation occurs with a large enough disturbance.Thus,the ULFO is resulting from the negative damping of generation and the saturation of multiple limits under a large enough disturbance.In addition,according to the above mechanism,two strategies to suppress the ULFO,i.e.,the governor parameters tuning and the fault strength relief are designed.The simulation shows the effectiveness of proposed strategies.
基金the financial support for this study provided by the National Natural Science Foundation of China (No. 41001157)the 135 Strategic Program of the Institute of Mountain Hazards and the Environment,Chinese Academy of Sciences (No.SDS-135-1206)the Young Teacher Foundation of Henan Polytechnic University, China
文摘Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 1376s technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline
基金supported by the National Key Research and Development Project of China(No.2017YFD0800200)the National Natural Science Foundation of China(Nos.41877093 and 41771323)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.KYZ201621)the Ministry of Education 111 Project of China(No.B12009)。
文摘Bio-organic fertilizers enriched with plant growth-promoting microbes(PGPMs)have been widely used in crop fields to promote plant growth and maintain soil microbiome functions.However,their potential effects on N_(2)O emissions are of increasing concern.In this study,an in situ measurement experiment was conducted to investigate the effect of organic fertilizer containing Trichoderma guizhouense(a plant growth-promoting fungus)on soil N_(2)O emissions from a greenhouse vegetable field.The following four treatments were used:no fertilizer(control),chemical fertilizer(NPK),organic fertilizer derived from cattle manure(O),and organic fertilizer containing T.guizhouense(O+T,referring to bio-organic fertilizer).The abundances of soil N cycling-related functional genes(amoA)from ammonium-oxidizing bacteria(AOB)and archaea(AOA),as well as nirS,nirK,and nosZ,were simultaneously determined using quantitative PCR(qPCR).Compared to the NPK plot,seasonal total N_(2)O emissions decreased by 11.7%and 18.7%in the O and O+T plots,respectively,which was attributed to lower NH_(4)^(+)-N content and AOB amoA abundance in the O and O+T plots.The nosZ abundance was significantly greater in the O+T plot,whilst the AOB amoA abundance was significantly lower in the O+T plot than in the O plot.Relative to the organic fertilizer,bio-organic fertilizer application tended to decrease N_(2)O emissions by 7.9%and enhanced vegetable yield,resulting in a significant decrease in yield-scaled N_(2)O emissions.Overall,the results of this study suggested that,compared to organic and chemical fertilizers,bio-organic fertilizers containing PGPMs could benefit crop yield and mitigate N_(2)O emissions in vegetable fields.