To explore the protective effect of tetramethylpyrazine (TMP) on the learning and memory function in D-galactose (D-gal)-lesioned mice. Methods C57BL/6 mice were injected (s.c.) 2% D-gal for 40 days (100 mg·kg-1&...To explore the protective effect of tetramethylpyrazine (TMP) on the learning and memory function in D-galactose (D-gal)-lesioned mice. Methods C57BL/6 mice were injected (s.c.) 2% D-gal for 40 days (100 mg·kg-1·d-1). Normal saline, TMP, and Huper-zine A were respectively given by intragastric administration in different groups from the third week. Learning and memory ability was tested with Morris water maze for 5 days at the sixth week. After completion of behavioral test, the mice were sacrificed by decapitation. The brain was rapidly removed, and the cortex and hippocampus were separated. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the cortex were determined. At the same time, the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), the binding sites (Bmax) and the affinity (KD) of M-cholinergic receptor in the cortex, and Bmax and KD of N-methyl-D-aspartate (NMDA) receptor in the hippocampus were determined. Results In this model group, (1) The deficit of learning and memory ability, (2) elevated MDA content and lowered SOD activity, (3) decreased AChE activity and M-cholinergic receptor binding sites in the cortex, and (4) lowered NMDA receptor binding sites were observed in the hippocampus, as compared with the normal control. TMP could markedly (1) attenuate cognitive dysfunction, (2) lower MDA content and elevate SOD activity, (3) increase the activity of ChAT and AChE, and M-cholinergic receptor binding sites in the cortex in the mice treated with D-gal. NMDA receptor binding sites were also increased in the hippocampus in the treated mice. Conclusion TMP can significantly strengthen antioxidative function, improve central cholinergic system function, protect NMDA receptor activity, and thus enhance the learning and memory ability in D-gal-lesioned mice.展开更多
Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated ...Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein ki- nase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB). The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC. Methods Immunohistochemistry and Western blot analy- sis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo. Double immunostaining was also used to determine the colocalization of pERK and pCREB. Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC, which was inhibited by the NMDAR antago- nist DL-2-amino-5-phospho-novaleric acid. Selective blockade of the NMDAR GluN2B subunit and the glycine- binding site, or degradation of endogenous D-serine, a co-agonist for the glycine site, significantly decreased the up- regulation of pERK and pCREB expression in the rACC. Further, the activated ERK predominantly colocalized with CREB. Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats, and these might be fundamental molecular mechanisms underlying pain affect.展开更多
Objective: To investigate effects of developmental lead exposure on nitric oxide synthase (NOS) activity in different brain regions and on N-methyl-D-aspartate (NMDA) receptor mRNA expression in the hippocampus of rat...Objective: To investigate effects of developmental lead exposure on nitric oxide synthase (NOS) activity in different brain regions and on N-methyl-D-aspartate (NMDA) receptor mRNA expression in the hippocampus of rats. On the basis of these observations, we explored possible mechanisms by which lead exposure leads to impaired learning and memorizing abilities in children. Methods: A series of rat animal models exposed to low levels of lead during the developing period was established (drinking water containing 0.025%, 0.05% and 0.075% lead acetate). NOS activities in the hippocampus, the cerebral cortex, the cerebellum and the brain stem were determined with fluorescence measurement and levels of mRNA expression of the NMDA receptor 2A (NR2A) subunit and NMDA receptor 2B (NR2B) subunit in the rat hippocampus were measured with Retro-translation (RT-PCR). Results: There were no differences in the body weight of rat pups between any of the groups at any given time (P>0.05). The blood lead level of Pb-exposed rat pups showed a systematic pattern of change: at 14 d of age, it was lower than that at 7 d of age, then rising to the peak level at 21 d and finally falling to lower levels at 28 d. The hippocampal NOS activities of lead-exposed groups were all lower than that of the control group on the 21 st and 28th day (P<0.01). NOS activities in the cerebellum of lead-exposed groups were all lower than that of the control group on the 21 st and 28th day (P<0.001) and the NOS activity of the 0.025% group was significantly lower than that of the 0.05% and 0.075% groups on the 28th day (P<0.05).NOS activity in the cerebral cortex of the 0.075% group was significantly lower than that of the control, 0.025% and 0.05% groups on the four day spans (P<0.001). There was no significant difference of NOS activity in the brain stem between any lead-exposed group and the control group on the four day spans. In the 0.05% and the 0.075% groups, the level of NR2A mRNA expression was higher than that in the control group at 7 d and 14 展开更多
文摘To explore the protective effect of tetramethylpyrazine (TMP) on the learning and memory function in D-galactose (D-gal)-lesioned mice. Methods C57BL/6 mice were injected (s.c.) 2% D-gal for 40 days (100 mg·kg-1·d-1). Normal saline, TMP, and Huper-zine A were respectively given by intragastric administration in different groups from the third week. Learning and memory ability was tested with Morris water maze for 5 days at the sixth week. After completion of behavioral test, the mice were sacrificed by decapitation. The brain was rapidly removed, and the cortex and hippocampus were separated. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the cortex were determined. At the same time, the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), the binding sites (Bmax) and the affinity (KD) of M-cholinergic receptor in the cortex, and Bmax and KD of N-methyl-D-aspartate (NMDA) receptor in the hippocampus were determined. Results In this model group, (1) The deficit of learning and memory ability, (2) elevated MDA content and lowered SOD activity, (3) decreased AChE activity and M-cholinergic receptor binding sites in the cortex, and (4) lowered NMDA receptor binding sites were observed in the hippocampus, as compared with the normal control. TMP could markedly (1) attenuate cognitive dysfunction, (2) lower MDA content and elevate SOD activity, (3) increase the activity of ChAT and AChE, and M-cholinergic receptor binding sites in the cortex in the mice treated with D-gal. NMDA receptor binding sites were also increased in the hippocampus in the treated mice. Conclusion TMP can significantly strengthen antioxidative function, improve central cholinergic system function, protect NMDA receptor activity, and thus enhance the learning and memory ability in D-gal-lesioned mice.
基金supported by the National Natural Science Foundation of China (30900444,31070973,30870835,31121061 and 30830044)
文摘Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein ki- nase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB). The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC. Methods Immunohistochemistry and Western blot analy- sis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo. Double immunostaining was also used to determine the colocalization of pERK and pCREB. Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC, which was inhibited by the NMDAR antago- nist DL-2-amino-5-phospho-novaleric acid. Selective blockade of the NMDAR GluN2B subunit and the glycine- binding site, or degradation of endogenous D-serine, a co-agonist for the glycine site, significantly decreased the up- regulation of pERK and pCREB expression in the rACC. Further, the activated ERK predominantly colocalized with CREB. Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats, and these might be fundamental molecular mechanisms underlying pain affect.
基金Project (No. 021103009) supported by the Science and Technology Bureau of Zhejiang Province, China
文摘Objective: To investigate effects of developmental lead exposure on nitric oxide synthase (NOS) activity in different brain regions and on N-methyl-D-aspartate (NMDA) receptor mRNA expression in the hippocampus of rats. On the basis of these observations, we explored possible mechanisms by which lead exposure leads to impaired learning and memorizing abilities in children. Methods: A series of rat animal models exposed to low levels of lead during the developing period was established (drinking water containing 0.025%, 0.05% and 0.075% lead acetate). NOS activities in the hippocampus, the cerebral cortex, the cerebellum and the brain stem were determined with fluorescence measurement and levels of mRNA expression of the NMDA receptor 2A (NR2A) subunit and NMDA receptor 2B (NR2B) subunit in the rat hippocampus were measured with Retro-translation (RT-PCR). Results: There were no differences in the body weight of rat pups between any of the groups at any given time (P>0.05). The blood lead level of Pb-exposed rat pups showed a systematic pattern of change: at 14 d of age, it was lower than that at 7 d of age, then rising to the peak level at 21 d and finally falling to lower levels at 28 d. The hippocampal NOS activities of lead-exposed groups were all lower than that of the control group on the 21 st and 28th day (P<0.01). NOS activities in the cerebellum of lead-exposed groups were all lower than that of the control group on the 21 st and 28th day (P<0.001) and the NOS activity of the 0.025% group was significantly lower than that of the 0.05% and 0.075% groups on the 28th day (P<0.05).NOS activity in the cerebral cortex of the 0.075% group was significantly lower than that of the control, 0.025% and 0.05% groups on the four day spans (P<0.001). There was no significant difference of NOS activity in the brain stem between any lead-exposed group and the control group on the four day spans. In the 0.05% and the 0.075% groups, the level of NR2A mRNA expression was higher than that in the control group at 7 d and 14