Wheat ear counting is a prerequisite for the evaluation of wheat yield.A wheat ear counting method based on frequency domain decomposition is proposed in this study to improve the accuracy of wheat yield estimation.Th...Wheat ear counting is a prerequisite for the evaluation of wheat yield.A wheat ear counting method based on frequency domain decomposition is proposed in this study to improve the accuracy of wheat yield estimation.The frequency domain decomposition of wheat ear image is completed by multiscale support value filter(MSVF)combined with improved sampled contourlet transform(ISCT).Support Vector Machine(SVM)is the classic classification and regression algorithm of machine learning.MSVF based on this has strong frequency domain filtering and generalization ability,which can effectively remove the complex background,while the multi-direction characteristics of ISCT enable it to represent the contour and texture information of wheat ears.In order to improve the level of wheat yield prediction,MSVF-ISCT method is used to decompose the ear image in multiscale and multi direction in frequency domain,reduce the interference of irrelevant information,and generate the sub-band image with more abundant information components of ear feature information.Then,the ear feature is extracted by morphological operation and maximum entropy threshold segmentation,and the skeleton thinning and corner detection algorithms are used to count the results.The number of wheat ears in the image can be accurately counted.Experiments show that compared with the traditional algorithms based on spatial domain,this method significantly improves the accuracy of wheat ear counting,which can provide guidance and application for the field of agricultural precision yield estimation.展开更多
为了进一步提升红外与可见光图像融合方法的性能,本文提出了一种基于多尺度局部极值分解与深度学习网络ResNet152的红外与可见光图像融合方法。首先,利用多尺度局部极值分解(multiscale local extrema decomposition,MLED)方法将源图像...为了进一步提升红外与可见光图像融合方法的性能,本文提出了一种基于多尺度局部极值分解与深度学习网络ResNet152的红外与可见光图像融合方法。首先,利用多尺度局部极值分解(multiscale local extrema decomposition,MLED)方法将源图像分解为近似图像和细节图像,分离出源图像中重叠的重要特征信息。然后采用残差网络ResNet152深度提取源图像的多维显著特征,以l_(1)-范数作为活性测度生成显著特征图,对近似图像进行加权平均融合,以保持能量和残留细节信息不丢失。在细节图像中,利用“系数绝对值取大”规则获得初始决策图,源图像作为引导图像,初始决策图作为输入图像进行引导滤波处理,得到优化决策图,计算加权局部能量得到能量显著图,对细节图像进行加权平均融合,使融合图像具有丰富的纹理细节和良好的视觉边缘感知。最后,对近似融合图像和细节融合图像进行重构,得到融合图像。实验结果表明,与现有的典型融合方法相比,本文所提出的融合方法在客观评价和视觉感受方面都取得了最好的效果。展开更多
基金National Natural Science Foundation of China(61672032)National Key Research and Development Program of China(2016YFD0800904)+1 种基金Anhui Provincial Science and Technology Project(16030701091)The Open Research Fund of National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University(AE2018009).
文摘Wheat ear counting is a prerequisite for the evaluation of wheat yield.A wheat ear counting method based on frequency domain decomposition is proposed in this study to improve the accuracy of wheat yield estimation.The frequency domain decomposition of wheat ear image is completed by multiscale support value filter(MSVF)combined with improved sampled contourlet transform(ISCT).Support Vector Machine(SVM)is the classic classification and regression algorithm of machine learning.MSVF based on this has strong frequency domain filtering and generalization ability,which can effectively remove the complex background,while the multi-direction characteristics of ISCT enable it to represent the contour and texture information of wheat ears.In order to improve the level of wheat yield prediction,MSVF-ISCT method is used to decompose the ear image in multiscale and multi direction in frequency domain,reduce the interference of irrelevant information,and generate the sub-band image with more abundant information components of ear feature information.Then,the ear feature is extracted by morphological operation and maximum entropy threshold segmentation,and the skeleton thinning and corner detection algorithms are used to count the results.The number of wheat ears in the image can be accurately counted.Experiments show that compared with the traditional algorithms based on spatial domain,this method significantly improves the accuracy of wheat ear counting,which can provide guidance and application for the field of agricultural precision yield estimation.
文摘为了进一步提升红外与可见光图像融合方法的性能,本文提出了一种基于多尺度局部极值分解与深度学习网络ResNet152的红外与可见光图像融合方法。首先,利用多尺度局部极值分解(multiscale local extrema decomposition,MLED)方法将源图像分解为近似图像和细节图像,分离出源图像中重叠的重要特征信息。然后采用残差网络ResNet152深度提取源图像的多维显著特征,以l_(1)-范数作为活性测度生成显著特征图,对近似图像进行加权平均融合,以保持能量和残留细节信息不丢失。在细节图像中,利用“系数绝对值取大”规则获得初始决策图,源图像作为引导图像,初始决策图作为输入图像进行引导滤波处理,得到优化决策图,计算加权局部能量得到能量显著图,对细节图像进行加权平均融合,使融合图像具有丰富的纹理细节和良好的视觉边缘感知。最后,对近似融合图像和细节融合图像进行重构,得到融合图像。实验结果表明,与现有的典型融合方法相比,本文所提出的融合方法在客观评价和视觉感受方面都取得了最好的效果。