期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于L1范数凸包数据描述的多观测样本分类算法 被引量:4
1
作者 胡正平 王玲丽 《电子与信息学报》 EI CSCD 北大核心 2012年第1期194-199,共6页
为建立高维空间样本分布的最佳覆盖为目标来实现覆盖分类,该文提出基于L1范数凸包数据描述的多观测样本分类算法。首先对训练集的每个类别以及测试集的多观测样本分别构造凸包模型,这样多观测样本的分类就转化为凸包模型的相似性度量问... 为建立高维空间样本分布的最佳覆盖为目标来实现覆盖分类,该文提出基于L1范数凸包数据描述的多观测样本分类算法。首先对训练集的每个类别以及测试集的多观测样本分别构造凸包模型,这样多观测样本的分类就转化为凸包模型的相似性度量问题。若测试集的凸包模型与训练集无重叠,采用L1范数距离测度进行凸包模型之间的相似性度量;若有重叠,采用L1范数距离测度进行收缩凸包(reduced convex hulls)之间的相似性度量。然后采用最近邻准则作为多观测样本的分类决策。在3个数据库上进行的实验结果,表明该文提出方法对于多观测样本分类具有可行性和有效性。 展开更多
关键词 模式识别 凸包 L1范数距离测度 最近邻分类 多观测样本
下载PDF
适合多观测样本的基于LS-SVM的新分类算法 被引量:1
2
作者 李欢 王士同 《计算机工程与应用》 CSCD 北大核心 2016年第1期113-119,共7页
针对多观测样本的二分类问题,提出适合多观测样本的基于LS-SVM的新分类算法。每次分类中,待分类的模式使用多观测样本集进行表示,首先对多观测样本集的标签进行假设,将此假设条件作为LS-SVM中优化问题的约束条件,由此得到分类误差,通过... 针对多观测样本的二分类问题,提出适合多观测样本的基于LS-SVM的新分类算法。每次分类中,待分类的模式使用多观测样本集进行表示,首先对多观测样本集的标签进行假设,将此假设条件作为LS-SVM中优化问题的约束条件,由此得到分类误差,通过比较两次假设下的分类误差确定多观测样本的类别。该方法无需提前训练获得分类器,而是同时利用已知标签样本和多观测样本集,充分利用同类样本在特征空间中连续分布的特点。最后通过三组实验验证了所提方法的有效性。 展开更多
关键词 模式识别 二分类 多观测样本 LS-SVM算法
下载PDF
基于Kernel Discriminant Canonical Correlation(KDCC)的多观测样本分类算法
3
作者 牛晓霞 胡正平 王玲丽 《数学的实践与认识》 CSCD 北大核心 2012年第9期96-107,共12页
针对多观测样本分类问题,提出一种基于Kernel Discriminant CanonicalCorrelation(KDCC)来实现多观测样本分类的模型.该算法首先把原空间样本非线性的投影到高维特征空间,通过KPCA得到核子空间,然后在高维特征空间定义一个使类内核子空... 针对多观测样本分类问题,提出一种基于Kernel Discriminant CanonicalCorrelation(KDCC)来实现多观测样本分类的模型.该算法首先把原空间样本非线性的投影到高维特征空间,通过KPCA得到核子空间,然后在高维特征空间定义一个使类内核子空间的相关性最大,同时使类间核子空间的相关性最小的KDCC矩阵,通过迭代法训练出最优的KDCC矩阵,把每个核子空间投影到KDCC矩阵上得到转换核子空间,采用典型相关性作为转换核子空间之间的相似性度量,并采用最近邻准则作为多观测样本的分类决策,从而实现多观测样本的分类.在三个数据库上进行了一系列实验,实验结果表明提出的方法对于多观测样本分类具有可行性和有效性. 展开更多
关键词 KDCC 典型相关性 最近邻分类 多观测样本
原文传递
基于稀疏恢复的L_1范数多观测样本凸包分类算法
4
作者 赵敬红 李永磊 《机械工程师》 2016年第1期9-11,共3页
在传统的统计模式识别中,由于单观测样本的分类受到样本数量的限制,导致最终的识别效果不够理想。针对这一不足,文中提出基于稀疏恢复的L_1范数多观测样本凸包分类算法,利用多张测试样本构成的凸包模型代替传统的单观测样本,通过计算观... 在传统的统计模式识别中,由于单观测样本的分类受到样本数量的限制,导致最终的识别效果不够理想。针对这一不足,文中提出基于稀疏恢复的L_1范数多观测样本凸包分类算法,利用多张测试样本构成的凸包模型代替传统的单观测样本,通过计算观测样本凸包与各类训练样本凸包的距离进行分类。这在一定程度上改善了单观测样本分类的不足,经过实验对比分析证明了算法的可行性以及优越性。文中算法结果为多观测样本的分类提供了有效的理论基础。 展开更多
关键词 稀疏恢复 多观测样本 凸包 距离 分类
下载PDF
支持向量机的多观测样本二分类算法 被引量:7
5
作者 李欢 王士同 《智能系统学报》 CSCD 北大核心 2014年第4期392-400,共9页
针对多观测样本的分类问题,提出基于SVM的多观测样本二分类算法。每次分类时,首先限制组成多观测样本的所有单观测样本属于同一类别,对多观测样本的类别做2次假设,通过比较不同类别假设下的目标函数最优解来确定多观测样本的类别。该方... 针对多观测样本的分类问题,提出基于SVM的多观测样本二分类算法。每次分类时,首先限制组成多观测样本的所有单观测样本属于同一类别,对多观测样本的类别做2次假设,通过比较不同类别假设下的目标函数最优解来确定多观测样本的类别。该方法无需对分类器进行训练或提前对训练集进行特征表示,而是将已知标签样本集和多观测样本作为一个整体,充分利用特征空间中同类样本连续分布这一特点,使得分类更加准确。结果表明所提方法的有效性。 展开更多
关键词 模式识别 多观测 同类样本 SVM 二分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部