Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers for Environmental Predic...Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers for Environmental Prediction), and UKMO (United Kingdom Met Office) in THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) datasets, for the Northern Hemisphere (10~ 87.5~N, 0~ 360~) from i June 2007 to 31 August 2007, this study carried out multimodel ensemble forecasts of surface temperature and 500-hPa geopotential height, temperature and winds up to 168 h by using the bias-removed ensemble mean (BREM), the multiple linear regression based superensemble (LRSUP), and the neural network based superensemble (NNSUP) techniques for the forecast period from 8 to 31 August 2007. A running training period is used for BREM and LRSUP ensemble forecast techniques. It is found that BREM and LRSUP, at each grid point, have different optimal lengths of the training period. In general, the optimal training period for BREM is less than 30 days in most areas, while for LRSUP it is about 45 days.展开更多
By using observational daily precipitation data over the Yangtze-Huaihe River basin, ERA-40 data, and the data from eight CMIP5 climate models, statistical downscaling models are constructed based on BP-CCA (combinat...By using observational daily precipitation data over the Yangtze-Huaihe River basin, ERA-40 data, and the data from eight CMIP5 climate models, statistical downscaling models are constructed based on BP-CCA (combination of empirical orthogonal function and canonical correlation analysis) to project future changes of precipitation. The results show that the absolute values of domain-averaged precipitation relative errors of most models are reduced from 8%-46% to 1% 7% after statistical downscaling. The spatial correlations are all improved from less than 0.40 to more than 0.60. As a result of the statistical downscaling multi- model ensemble (SDMME), the relative error is improved from -15.8% to -1.3%, and the spatial correlation increases significantly from 0.46 to 0.88. These results demonstrate that the simulation skill of SDMME is relatively better than that of the multimodel ensemble (MME) and the downscaling of most individual models. The projections of SDMME reveal that under the RCP (Representative Concentration Pathway) 4.5 scenario, the projected domain-averaged precipitation changes for the early (2016-2035), middle (2046 2065), and late (2081-2100) 21st century are 1.8%, 6.1%, and 9.9%, respectively. For the early period, the increasing trends of precipitation in the western region are relatively weak, while the precipitation in the east shows a decreasing trend. Furthermore, the reliability of the projected changes over the area east of l15°E is higher than that in the west. The stations with significant increasing trends are primarily located over the western region in both the middle and late periods~ with larger magnitude for the latter. Stations with high reliability mainly appear in the region north of 28.5°N for both periods.展开更多
With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated b...With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated by two different algorithms: the Simple Model Average (SMA) and the Weighted Average Method (WAM). The two algorithms are tested and compared in terms of their abilities to retrieve the true soil moisture profile by respectively assimilating both synthetically-generated and actual near-surface soil moisture measurements. The results from the synthetic experiment show that the performances of the SMA and WAM algorithms were quite different. The SMA algorithm did not help to improve the estimates of soil moisture at the deep layers, although its performance was not the worst when compared with the results from the single-model EnKF. On the contrary, the results from the WAM algorithm were better than those from any single-model EnKF. The tested results from assimilating the field measurements show that the performance of the two multimodel EnKF algorithms was very stable compared with the single-model EnKF. Although comparisons could only be made at three shallow layers, on average, the performance of the WAM algorithm was still slightly better than that of the SMA algorithm. As a result, the WAM algorithm should be adopted to approximate the multimodel background superensemble error covariance and hence used to estimate soil moisture states at the relatively deep layers.展开更多
An investigation of the difference in seasonal precipitation forecast skills between the multiple linear regression (MLR) ensemble and the simple multimodel ensemble mean (EM) was based on the forecast quality of ...An investigation of the difference in seasonal precipitation forecast skills between the multiple linear regression (MLR) ensemble and the simple multimodel ensemble mean (EM) was based on the forecast quality of individual models. The possible causes of difference in previous studies were analyzed. In order to make the simulation capability of studied regions relatively uniform, three regions with different temporal correlation coefficients were chosen for this study. Results show the causes resulting in the incapability of the MLR approach vary among different regions. In the Nifio3.4 region, strong co-linearity within individual models is generally the main reason. However, in the high latitude region, no significant co-linearity can be found in individual models, but the abilities of single models are so poor that it makes the MLR approach inappropriate for superensemble forecasts in this region. In addition, it is important to note that the use of various score measurements could result in some discrepancies when we compare the results derived from different multimodel ensemble approaches.展开更多
Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing condition...Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean.展开更多
Airborne geophysical investigations are now recognized as a powerful tool for geological-geophysical mapping, mineral prospecting, environmental assessments, ecological monitoring, etc. Currently, however, there are t...Airborne geophysical investigations are now recognized as a powerful tool for geological-geophysical mapping, mineral prospecting, environmental assessments, ecological monitoring, etc. Currently, however, there are two main drawbacks to effective application of these investigations: (a) the difficulty of conducting geophysical surveys at low altitudes, (b) heightened danger for the aircraft crew, especially in regions with a rugged topography. Unmanned or so-called Remote Operated Vehicles (ROV) surveys are not bound by these limitations. The new unmanned generation of small and maneuvering vehicles can fly at levels of a few (even one) meters above the Earth’s surface, and thus follow the relief, while simultaneously making geophysical measurements. In addition, ROV geophysical investigations have extremely low exploitation costs. Finally, measurements of geophysical fields at different observation levels can provide new, unique geological-geophysical information. This chapter discusses future geophysical integration into ROV of measurements of magnetic and VLF electromagnetic fields. The use of GPS with improved wide-band Kalman filtering will be able to provide exact geodetic coordinates. A novel interpreting system for complex environments is presented that includes non-conventional methods for localizing targets in noisy backgrounds, filtering temporary variations from magnetic and VLF fields, eliminating terrain relief influence, quantitative analysis of the observed anomalies and their integrated examination. This system can be successfully applied at various scales for analysis of geophysical data obtained by ROVs to search for useful minerals, geological mapping, the resolution of many environmental problems, and geophysical monitoring of dangerous geological phenomena.展开更多
Different multimodel ensemble methods are used to forecast precipitations in China, 1998, and their forecast skills are compared with those of individual models. Datasets were obtained from monthly simulations of eigh...Different multimodel ensemble methods are used to forecast precipitations in China, 1998, and their forecast skills are compared with those of individual models. Datasets were obtained from monthly simulations of eight models during the period of January 1979 to December 1998 from the “Climate of the 20th Century Experiment” (20C3M) for the Fourth IPCC Assessment Report. Climate Research Unit (CRU) data were chosen for the observation analysis field. Root mean square (RMS) error and correlation coeffi-cients (R) are used to measure the forecast skills. In addition, superensemble forecasts based on different input data and weights are analyzed. Results show that for original data, superensemble forecasting based on multiple linear regression (MLR) performs best. However, for bias-corrected data, the superensemble based on singular value decomposition (SVD) produces a lower RMS error and a higher R than in the MLR superensemble. It is an interesting result that the SVD superensemble based on bias-corrected data performs better than the MLR superensemble, but that the SVD superensemble based on original data is inferior to the corresponding MLR superensemble. In addition, weights calculated by different data formats are shown to affect the forecast skills of the superensembles. In comparison with the MLR superensemble, a slightly significant effect is present in the SVD superensemble. However, both the SVD and MLR superensembles based on different weight formats outperform the ensemble mean of bias-corrected data.展开更多
Based on the evaluation of state-of-the-art coupled ocean-atmosphere general circulation models (CGCMs) from the ENSEMBLES (Ensemble-based Predictions of Climate Changes and Their Impacts) and DEME- TER (Developm...Based on the evaluation of state-of-the-art coupled ocean-atmosphere general circulation models (CGCMs) from the ENSEMBLES (Ensemble-based Predictions of Climate Changes and Their Impacts) and DEME- TER (Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction) projects, it is found that the prediction of the South China Sea summer monsoon (SCSSM) has improved since the late 1970s. These CGCMs show better skills in prediction of the atmospheric circulation and precipitation within the SCSSM domain during 1979-2005 than that during 1960-1978. Possible reasons for this improvement are investigated. First, the relationship between the SSTs over the tropical Pacific, North Pacific and tropical Indian Ocean, and SCSSM has intensified since the late 1970s. Meanwhile, the SCSSM-related SSTs, with their larger amplitude of interannual variability, have been better predicted. Moreover, the larger amplitude of the interannual variability of the SCSSM and improved initializations for CGCMs after the late 1970s contribute to the better prediction of the SCSSM. In addition, considering that the CGCMs have certain limitations in SCSSM rainfall prediction, we applied the year-to-year increment approach to these CGCMs from the DEMETER and ENSEMBLES projects to improve the prediction of SCSSM rainfall before and after the late 1970s.展开更多
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY(QX)2007-6-1)National Key Basic Research and Development (973) Program of China (2012CB955204)
文摘Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers for Environmental Prediction), and UKMO (United Kingdom Met Office) in THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) datasets, for the Northern Hemisphere (10~ 87.5~N, 0~ 360~) from i June 2007 to 31 August 2007, this study carried out multimodel ensemble forecasts of surface temperature and 500-hPa geopotential height, temperature and winds up to 168 h by using the bias-removed ensemble mean (BREM), the multiple linear regression based superensemble (LRSUP), and the neural network based superensemble (NNSUP) techniques for the forecast period from 8 to 31 August 2007. A running training period is used for BREM and LRSUP ensemble forecast techniques. It is found that BREM and LRSUP, at each grid point, have different optimal lengths of the training period. In general, the optimal training period for BREM is less than 30 days in most areas, while for LRSUP it is about 45 days.
基金Supported by the National Natural Science Foundation of China(41230528)Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsNational Key Pesearch and Development Program of China(2016YFA0600402)
文摘By using observational daily precipitation data over the Yangtze-Huaihe River basin, ERA-40 data, and the data from eight CMIP5 climate models, statistical downscaling models are constructed based on BP-CCA (combination of empirical orthogonal function and canonical correlation analysis) to project future changes of precipitation. The results show that the absolute values of domain-averaged precipitation relative errors of most models are reduced from 8%-46% to 1% 7% after statistical downscaling. The spatial correlations are all improved from less than 0.40 to more than 0.60. As a result of the statistical downscaling multi- model ensemble (SDMME), the relative error is improved from -15.8% to -1.3%, and the spatial correlation increases significantly from 0.46 to 0.88. These results demonstrate that the simulation skill of SDMME is relatively better than that of the multimodel ensemble (MME) and the downscaling of most individual models. The projections of SDMME reveal that under the RCP (Representative Concentration Pathway) 4.5 scenario, the projected domain-averaged precipitation changes for the early (2016-2035), middle (2046 2065), and late (2081-2100) 21st century are 1.8%, 6.1%, and 9.9%, respectively. For the early period, the increasing trends of precipitation in the western region are relatively weak, while the precipitation in the east shows a decreasing trend. Furthermore, the reliability of the projected changes over the area east of l15°E is higher than that in the west. The stations with significant increasing trends are primarily located over the western region in both the middle and late periods~ with larger magnitude for the latter. Stations with high reliability mainly appear in the region north of 28.5°N for both periods.
基金supported by the National Natural Science Foundation of China (Grant Nos 40775065 and 41075074)the National Special Fund for Meteorology (Grant No GYHY200806029)
文摘With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated by two different algorithms: the Simple Model Average (SMA) and the Weighted Average Method (WAM). The two algorithms are tested and compared in terms of their abilities to retrieve the true soil moisture profile by respectively assimilating both synthetically-generated and actual near-surface soil moisture measurements. The results from the synthetic experiment show that the performances of the SMA and WAM algorithms were quite different. The SMA algorithm did not help to improve the estimates of soil moisture at the deep layers, although its performance was not the worst when compared with the results from the single-model EnKF. On the contrary, the results from the WAM algorithm were better than those from any single-model EnKF. The tested results from assimilating the field measurements show that the performance of the two multimodel EnKF algorithms was very stable compared with the single-model EnKF. Although comparisons could only be made at three shallow layers, on average, the performance of the WAM algorithm was still slightly better than that of the SMA algorithm. As a result, the WAM algorithm should be adopted to approximate the multimodel background superensemble error covariance and hence used to estimate soil moisture states at the relatively deep layers.
基金supported by the National Key Technology Research and Development Program(Grant No.2006BAC02B04)the Major State Basic Research Development Program of China(Grant No.2006CB400503)
文摘An investigation of the difference in seasonal precipitation forecast skills between the multiple linear regression (MLR) ensemble and the simple multimodel ensemble mean (EM) was based on the forecast quality of individual models. The possible causes of difference in previous studies were analyzed. In order to make the simulation capability of studied regions relatively uniform, three regions with different temporal correlation coefficients were chosen for this study. Results show the causes resulting in the incapability of the MLR approach vary among different regions. In the Nifio3.4 region, strong co-linearity within individual models is generally the main reason. However, in the high latitude region, no significant co-linearity can be found in individual models, but the abilities of single models are so poor that it makes the MLR approach inappropriate for superensemble forecasts in this region. In addition, it is important to note that the use of various score measurements could result in some discrepancies when we compare the results derived from different multimodel ensemble approaches.
基金Special Scientific Research Fund of Meteorological Public Welfare Industries of China(GYHY(QX)2007-6-1)National Nature Science Foundation of China(41305081)
文摘Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean.
文摘Airborne geophysical investigations are now recognized as a powerful tool for geological-geophysical mapping, mineral prospecting, environmental assessments, ecological monitoring, etc. Currently, however, there are two main drawbacks to effective application of these investigations: (a) the difficulty of conducting geophysical surveys at low altitudes, (b) heightened danger for the aircraft crew, especially in regions with a rugged topography. Unmanned or so-called Remote Operated Vehicles (ROV) surveys are not bound by these limitations. The new unmanned generation of small and maneuvering vehicles can fly at levels of a few (even one) meters above the Earth’s surface, and thus follow the relief, while simultaneously making geophysical measurements. In addition, ROV geophysical investigations have extremely low exploitation costs. Finally, measurements of geophysical fields at different observation levels can provide new, unique geological-geophysical information. This chapter discusses future geophysical integration into ROV of measurements of magnetic and VLF electromagnetic fields. The use of GPS with improved wide-band Kalman filtering will be able to provide exact geodetic coordinates. A novel interpreting system for complex environments is presented that includes non-conventional methods for localizing targets in noisy backgrounds, filtering temporary variations from magnetic and VLF fields, eliminating terrain relief influence, quantitative analysis of the observed anomalies and their integrated examination. This system can be successfully applied at various scales for analysis of geophysical data obtained by ROVs to search for useful minerals, geological mapping, the resolution of many environmental problems, and geophysical monitoring of dangerous geological phenomena.
文摘Different multimodel ensemble methods are used to forecast precipitations in China, 1998, and their forecast skills are compared with those of individual models. Datasets were obtained from monthly simulations of eight models during the period of January 1979 to December 1998 from the “Climate of the 20th Century Experiment” (20C3M) for the Fourth IPCC Assessment Report. Climate Research Unit (CRU) data were chosen for the observation analysis field. Root mean square (RMS) error and correlation coeffi-cients (R) are used to measure the forecast skills. In addition, superensemble forecasts based on different input data and weights are analyzed. Results show that for original data, superensemble forecasting based on multiple linear regression (MLR) performs best. However, for bias-corrected data, the superensemble based on singular value decomposition (SVD) produces a lower RMS error and a higher R than in the MLR superensemble. It is an interesting result that the SVD superensemble based on bias-corrected data performs better than the MLR superensemble, but that the SVD superensemble based on original data is inferior to the corresponding MLR superensemble. In addition, weights calculated by different data formats are shown to affect the forecast skills of the superensembles. In comparison with the MLR superensemble, a slightly significant effect is present in the SVD superensemble. However, both the SVD and MLR superensembles based on different weight formats outperform the ensemble mean of bias-corrected data.
基金Supported by the National Natural Science Foundation of China(41421004,41325018,and 41575079)State Administration for Foreign Expert Affairs of the Chinses Academy of Sciences(CAS/SAFEA)
文摘Based on the evaluation of state-of-the-art coupled ocean-atmosphere general circulation models (CGCMs) from the ENSEMBLES (Ensemble-based Predictions of Climate Changes and Their Impacts) and DEME- TER (Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction) projects, it is found that the prediction of the South China Sea summer monsoon (SCSSM) has improved since the late 1970s. These CGCMs show better skills in prediction of the atmospheric circulation and precipitation within the SCSSM domain during 1979-2005 than that during 1960-1978. Possible reasons for this improvement are investigated. First, the relationship between the SSTs over the tropical Pacific, North Pacific and tropical Indian Ocean, and SCSSM has intensified since the late 1970s. Meanwhile, the SCSSM-related SSTs, with their larger amplitude of interannual variability, have been better predicted. Moreover, the larger amplitude of the interannual variability of the SCSSM and improved initializations for CGCMs after the late 1970s contribute to the better prediction of the SCSSM. In addition, considering that the CGCMs have certain limitations in SCSSM rainfall prediction, we applied the year-to-year increment approach to these CGCMs from the DEMETER and ENSEMBLES projects to improve the prediction of SCSSM rainfall before and after the late 1970s.
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.