负荷预测是综合能源系统(integrated energy system,IES)能量管理和优化调度的基础,其预测精度直接关系到系统的整体运行性能。提出了一种基于Transformer网络和多任务学习的园区综合能源系统电-热短期负荷预测模型。首先对Transformer...负荷预测是综合能源系统(integrated energy system,IES)能量管理和优化调度的基础,其预测精度直接关系到系统的整体运行性能。提出了一种基于Transformer网络和多任务学习的园区综合能源系统电-热短期负荷预测模型。首先对Transformer网络和多任务学习结构的基本原理进行了介绍;然后通过基于随机森林的特征选择步骤提取反映负荷特性和变化规律的典型指标,构建多任务学习输入特征,基于Transformer网络构建多任务学习权值共享层,并通过全连接层输出多能负荷的预测值;最后通过实际园区微能源系统的数据验证所提方法和算法的有效性,结果表明本文所提模型可以充分学习电-热耦合特征,提高负荷预测的精度。展开更多
Increase in permeability of renewable energy sources(RESs)leads to the prominent problem of voltage stability in power system,so it is urgent to have a system strength evaluation method with both accuracy and practica...Increase in permeability of renewable energy sources(RESs)leads to the prominent problem of voltage stability in power system,so it is urgent to have a system strength evaluation method with both accuracy and practicability to control its access scale within a reasonable range.Therefore,a hybrid intelligence enhancement method is proposed by combining the advantages of mechanism method and data driven method.First,calculation of critical short circuit ratio(CSCR)is set as the direction of intelligent enhancement by taking the multiple renewable energy station short circuit ratio as the quantitative indicator.Then,the construction process of CSCR dataset is proposed,and a batch simulation program of samples is developed accordingly,which provides a data basis for subsequent research.Finally,a multi-task learning model based on progressive layered extraction is used to simultaneously predict CSCR of each RESs connection point,which significantly reduces evaluation error caused by weak links.Predictive performance and anti-noise performance of the proposed method are verified on the CEPRI-FS-102 bus system,which provides strong technical support for real-time monitoring of system strength.展开更多
文摘负荷预测是综合能源系统(integrated energy system,IES)能量管理和优化调度的基础,其预测精度直接关系到系统的整体运行性能。提出了一种基于Transformer网络和多任务学习的园区综合能源系统电-热短期负荷预测模型。首先对Transformer网络和多任务学习结构的基本原理进行了介绍;然后通过基于随机森林的特征选择步骤提取反映负荷特性和变化规律的典型指标,构建多任务学习输入特征,基于Transformer网络构建多任务学习权值共享层,并通过全连接层输出多能负荷的预测值;最后通过实际园区微能源系统的数据验证所提方法和算法的有效性,结果表明本文所提模型可以充分学习电-热耦合特征,提高负荷预测的精度。
文摘Increase in permeability of renewable energy sources(RESs)leads to the prominent problem of voltage stability in power system,so it is urgent to have a system strength evaluation method with both accuracy and practicability to control its access scale within a reasonable range.Therefore,a hybrid intelligence enhancement method is proposed by combining the advantages of mechanism method and data driven method.First,calculation of critical short circuit ratio(CSCR)is set as the direction of intelligent enhancement by taking the multiple renewable energy station short circuit ratio as the quantitative indicator.Then,the construction process of CSCR dataset is proposed,and a batch simulation program of samples is developed accordingly,which provides a data basis for subsequent research.Finally,a multi-task learning model based on progressive layered extraction is used to simultaneously predict CSCR of each RESs connection point,which significantly reduces evaluation error caused by weak links.Predictive performance and anti-noise performance of the proposed method are verified on the CEPRI-FS-102 bus system,which provides strong technical support for real-time monitoring of system strength.