A Cd-containing metal–organic framework(Cd L), formula as {[Cd_3(L)_2(H_2O)_6] 1.5DMF}, has been synthesized under solvothermal condition by the reaction of 4,40,400-(methylsilanetriyl)tribenzoic acid(H_3L)...A Cd-containing metal–organic framework(Cd L), formula as {[Cd_3(L)_2(H_2O)_6] 1.5DMF}, has been synthesized under solvothermal condition by the reaction of 4,40,400-(methylsilanetriyl)tribenzoic acid(H_3L) and Cd^(2+)ion. Single-crystal X-ray diffraction reveals that Cd L displays a three-dimensional framework with 2-fold interpenetration and DMF molecules locate in the void space of the channels. A topological analysis of the framework indicates Cd Lisa 3,4-connected pto net. The photoluminescence properties of Cd L are systematically studied in detail. Impressively, Cd L shows excellent detection performance towards Fe^(3+)ion and acetone in the sensing experiments, which undoubtedly demonstrates the great potential of Cd L as a highly selective multi-responsive luminescent sensor for the detection of organic solvents and metal ions.展开更多
Fluorescent materials that respond to multiple stimuli have broad applications ranging from sensing and bioimaging to information encryption.Herein,we report the design and synthesis of a single-fluorophorebased amphi...Fluorescent materials that respond to multiple stimuli have broad applications ranging from sensing and bioimaging to information encryption.Herein,we report the design and synthesis of a single-fluorophorebased amphiphile DCSO,which shows temperature-,solvent-,humidity-,and radiation-dependent fluorescence.DCSO consists of a dicyanostilbene(DCS)group as a rigid hydrophobic core with oligo(ethylene glycol)(OEG)chains at both ends as a flexible hydrophilic periphery.The DCS group acts as a highly efficient fluorophore,while the OEG chain endows the molecule with thermo-responsiveness.Fluorescent colors can vary from blue to green to yellow in response to external stimuli.On the basis of light radiation,we demonstrate that this system can be applied to time-dependent information encryption,in which the correct information can only be read at a specific time under irradiation.This work further demonstrates the usefulness and application of single-fluorophore-based luminescent materials with multiple stimuli-responsive functions.展开更多
Phase change materials(PCMs)are a highly promising candidate for thermal energy storage owing to their large latent heat and chemical stability.However,their intrinsic brittle induces poor flexibility and low mechanic...Phase change materials(PCMs)are a highly promising candidate for thermal energy storage owing to their large latent heat and chemical stability.However,their intrinsic brittle induces poor flexibility and low mechanical strength,which limits them use for wearable thermal management.And,the electrical insulation and weak solar absorption make them lack multi-responsive capability.Herein,we report a facile strategy to synthesize mechanically strong and flexible multi-responsive phase change films by stirring an aqueous dispersion of cellulose nanofibrils(CNFs),MXene(Ti_(2)C_(3))nanosheets,and polyethylene glycol(PEG),followed by air-drying self-assembly and coating with hydrophobic fluorocarbon.The hydrogen bonds and nacre-mimetic synergistic toughening networks formed by ternary CNFs,Ti_(2)C_(3)nanosheets,and PEG endow films with high mechanical strength(16.7 MPa)and strain(10.4%),which are 18.6 and 8.7 times higher than those of pure PEG film,respectively.The films exhibit outstanding flexibility and do not crack or fracture even when bent,twisted,and folded into a complex small boat.Meanwhile,the laminar structure formed by the self-assembly Ti_(3)C_(2)nanosheets enhances electrical conductivity(3.95 S/m)and solar absorption,affording excellent electro-thermal(68.3%–81.0%)and solarthermal(85.6%–90.6%)conversion efficiency,thus achieving multi-response to external stimuli(electron/solar radiation).In addition,the as-prepared films also deliver large latent heat(136.1 J/g),outstanding cyclic and shape stability,leak-free encapsulation even under compressed at above 5000 times its weight,excellent hydrophobicity(131.4°),and self-cleaning function.This work paves the way for developing flexible,mechanically strong,and self-cleaning phase change film with multi-responsive function for wearable thermal management devices under high humidity condition.展开更多
Hydrogels formed by gelators have attracted growing attention for their promising application in biomaterials and biotechnology, We describe in this paper the generation and characterization of a novel photo-, thermal...Hydrogels formed by gelators have attracted growing attention for their promising application in biomaterials and biotechnology, We describe in this paper the generation and characterization of a novel photo-, thermal- and pH-responsive hydrogel based on an amino acid gelator AA-Azo-EG6. Specifically, the gelator bears an amino acid head, an azobenzene (Azo) linker, and a short oligoethylene glycol tail (EG6). The resulting AA-Azo-EG6 hydrogel is injectable and exhibits interesting helical self-assembled structures, Meanwhile, the hydrogel is able to experience a gel-sol or gel-precipitate phase transition responding to external stimuli. Thus, this AA-Azo-EG6 gelator is a promising building block for intelligent materials and drug delivery.展开更多
Inspired by the influence of chemical structure of end groups on the phase transition temperature of thermoresponsive polymers,we demonstrated a strategy to control the multi-responsiveness of polymer assemblies via s...Inspired by the influence of chemical structure of end groups on the phase transition temperature of thermoresponsive polymers,we demonstrated a strategy to control the multi-responsiveness of polymer assemblies via subtle modification of end groups of thermoresponsive polymer segments and revealed its potential application for drug delivery.By developing polymer assemblies composed of poly(aliphatic ester) as the inner core and thermoresponsive polyphosphoester as the outer shell,we showed that end groups of thermoresponsive polyphosphoester segments controlled the surface property of assemblies and further determined the stimuli-responsive behavior.The phase-transition temperatures of the unmodified polymer assemblies are tightly controlled by their surface properties due to the hydrophilic to hydrophobic transitions of end groups in response to an environmental stimulus (e.g.pH or light irradiation).External control over these surface properties can by asserted by adjusting the chemical structure and composition of the terminal groups of the thermoresponsive polyphosphoesters.展开更多
We demonstrated here a new family of multi-responsive polymer:wholly aromatic sulfonated polyamide(SPA).SPA exhibited the unusual response to temperature and pH with the tunable low critical solution temperature(LCST)...We demonstrated here a new family of multi-responsive polymer:wholly aromatic sulfonated polyamide(SPA).SPA exhibited the unusual response to temperature and pH with the tunable low critical solution temperature(LCST).LCST of the obtained SPA decreased sharply with the increasing pH,and the difference of LCST between pH 6.0-6.8 is about 60 ℃.展开更多
基金supported by National Natural Science Foundation of China (Nos. 21171162, 21471144)Jilin Province Youth Foundation (No. 20130522132JH)+1 种基金Jilin Province Natural Science Foundation (No. 20150101181JC)Changchun Science and Technology Plan (No. 2013059)
文摘A Cd-containing metal–organic framework(Cd L), formula as {[Cd_3(L)_2(H_2O)_6] 1.5DMF}, has been synthesized under solvothermal condition by the reaction of 4,40,400-(methylsilanetriyl)tribenzoic acid(H_3L) and Cd^(2+)ion. Single-crystal X-ray diffraction reveals that Cd L displays a three-dimensional framework with 2-fold interpenetration and DMF molecules locate in the void space of the channels. A topological analysis of the framework indicates Cd Lisa 3,4-connected pto net. The photoluminescence properties of Cd L are systematically studied in detail. Impressively, Cd L shows excellent detection performance towards Fe^(3+)ion and acetone in the sensing experiments, which undoubtedly demonstrates the great potential of Cd L as a highly selective multi-responsive luminescent sensor for the detection of organic solvents and metal ions.
基金supported by the National Natural Science Foundation of China(No.21702020)partially supported by the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(No.SN-ZJU-SIAS-006).
文摘Fluorescent materials that respond to multiple stimuli have broad applications ranging from sensing and bioimaging to information encryption.Herein,we report the design and synthesis of a single-fluorophorebased amphiphile DCSO,which shows temperature-,solvent-,humidity-,and radiation-dependent fluorescence.DCSO consists of a dicyanostilbene(DCS)group as a rigid hydrophobic core with oligo(ethylene glycol)(OEG)chains at both ends as a flexible hydrophilic periphery.The DCS group acts as a highly efficient fluorophore,while the OEG chain endows the molecule with thermo-responsiveness.Fluorescent colors can vary from blue to green to yellow in response to external stimuli.On the basis of light radiation,we demonstrate that this system can be applied to time-dependent information encryption,in which the correct information can only be read at a specific time under irradiation.This work further demonstrates the usefulness and application of single-fluorophore-based luminescent materials with multiple stimuli-responsive functions.
基金financial support by the Programme of Introducing Talents of Discipline to Universities(Project 111,B21022)the National Natural Science Foundation of China(22108014)the Beijing Nova Program(Z211100002121084)。
文摘Phase change materials(PCMs)are a highly promising candidate for thermal energy storage owing to their large latent heat and chemical stability.However,their intrinsic brittle induces poor flexibility and low mechanical strength,which limits them use for wearable thermal management.And,the electrical insulation and weak solar absorption make them lack multi-responsive capability.Herein,we report a facile strategy to synthesize mechanically strong and flexible multi-responsive phase change films by stirring an aqueous dispersion of cellulose nanofibrils(CNFs),MXene(Ti_(2)C_(3))nanosheets,and polyethylene glycol(PEG),followed by air-drying self-assembly and coating with hydrophobic fluorocarbon.The hydrogen bonds and nacre-mimetic synergistic toughening networks formed by ternary CNFs,Ti_(2)C_(3)nanosheets,and PEG endow films with high mechanical strength(16.7 MPa)and strain(10.4%),which are 18.6 and 8.7 times higher than those of pure PEG film,respectively.The films exhibit outstanding flexibility and do not crack or fracture even when bent,twisted,and folded into a complex small boat.Meanwhile,the laminar structure formed by the self-assembly Ti_(3)C_(2)nanosheets enhances electrical conductivity(3.95 S/m)and solar absorption,affording excellent electro-thermal(68.3%–81.0%)and solarthermal(85.6%–90.6%)conversion efficiency,thus achieving multi-response to external stimuli(electron/solar radiation).In addition,the as-prepared films also deliver large latent heat(136.1 J/g),outstanding cyclic and shape stability,leak-free encapsulation even under compressed at above 5000 times its weight,excellent hydrophobicity(131.4°),and self-cleaning function.This work paves the way for developing flexible,mechanically strong,and self-cleaning phase change film with multi-responsive function for wearable thermal management devices under high humidity condition.
基金supported by [18_TD$IF]State High-Tech Development Program of China (863 Program, No. 2015AA020941)the National Natural Science Foundation of China(Nos. NSFC21474004 and NSFC21434008)the Youth Thousand-Talents Program of China for support
文摘Hydrogels formed by gelators have attracted growing attention for their promising application in biomaterials and biotechnology, We describe in this paper the generation and characterization of a novel photo-, thermal- and pH-responsive hydrogel based on an amino acid gelator AA-Azo-EG6. Specifically, the gelator bears an amino acid head, an azobenzene (Azo) linker, and a short oligoethylene glycol tail (EG6). The resulting AA-Azo-EG6 hydrogel is injectable and exhibits interesting helical self-assembled structures, Meanwhile, the hydrogel is able to experience a gel-sol or gel-precipitate phase transition responding to external stimuli. Thus, this AA-Azo-EG6 gelator is a promising building block for intelligent materials and drug delivery.
基金This work was supported by the Ministry of Science and Technology of China (Nos.2010CB934001,2012AA022501,2013CB933900),the National Natural Science Foundation of China (Nos.51203145,51125012),the Fundamental Research Funds for the Central Universities (No.WK2070000008) and the Open Project of State Key Laboratory of Supramolecular Structure and Materials (No.SKLSSM201301).
文摘Inspired by the influence of chemical structure of end groups on the phase transition temperature of thermoresponsive polymers,we demonstrated a strategy to control the multi-responsiveness of polymer assemblies via subtle modification of end groups of thermoresponsive polymer segments and revealed its potential application for drug delivery.By developing polymer assemblies composed of poly(aliphatic ester) as the inner core and thermoresponsive polyphosphoester as the outer shell,we showed that end groups of thermoresponsive polyphosphoester segments controlled the surface property of assemblies and further determined the stimuli-responsive behavior.The phase-transition temperatures of the unmodified polymer assemblies are tightly controlled by their surface properties due to the hydrophilic to hydrophobic transitions of end groups in response to an environmental stimulus (e.g.pH or light irradiation).External control over these surface properties can by asserted by adjusting the chemical structure and composition of the terminal groups of the thermoresponsive polyphosphoesters.
基金the National Natural Science Foundation of China(21174085)Science & Technology and Education Commission of Shanghai Municipal Government(11QA1403100,12ZZ020)+1 种基金the Shanghai Leading Academic Discipline Project(B202)X.Jiang is supported by the SMC Project of Shanghai Jiao Tong University
文摘We demonstrated here a new family of multi-responsive polymer:wholly aromatic sulfonated polyamide(SPA).SPA exhibited the unusual response to temperature and pH with the tunable low critical solution temperature(LCST).LCST of the obtained SPA decreased sharply with the increasing pH,and the difference of LCST between pH 6.0-6.8 is about 60 ℃.