期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多尺度特征和神经网络相融合的手写体数字识别
被引量:
14
1
作者
赵元庆
吴华
《计算机科学》
CSCD
北大核心
2013年第8期316-318,共3页
针对传统特征提取方法无法有效解决书写随意性的干扰问题,提出了一种多尺度特征和神经网络相融合的手写体数字识别方法。首先提取手写体数字二值图像的轮廓、笔画次序等结构特征,并旋转坐标轴,提取多角度结构特征;然后将字符从中心点到...
针对传统特征提取方法无法有效解决书写随意性的干扰问题,提出了一种多尺度特征和神经网络相融合的手写体数字识别方法。首先提取手写体数字二值图像的轮廓、笔画次序等结构特征,并旋转坐标轴,提取多角度结构特征;然后将字符从中心点到外边框划分为K层矩形子层,提取每层图像的灰度特征,最后以两种多尺度特征构建神经网络模型,并预测测试集合样本。将该算法实际用于以MNIST字体库构建的两个数据集识别,其精度高达99.8%,并能有效降低倾斜等手写字体的随意性影响。
展开更多
关键词
多尺度
手写体数字识别
多角度结构特征
多层次灰度特征
下载PDF
职称材料
题名
多尺度特征和神经网络相融合的手写体数字识别
被引量:
14
1
作者
赵元庆
吴华
机构
安阳师范学院计算机与信息工程学院
安阳师范学院公共计算机教学部
出处
《计算机科学》
CSCD
北大核心
2013年第8期316-318,共3页
基金
国家自然科学基金青年基金项目(41001251)资助
文摘
针对传统特征提取方法无法有效解决书写随意性的干扰问题,提出了一种多尺度特征和神经网络相融合的手写体数字识别方法。首先提取手写体数字二值图像的轮廓、笔画次序等结构特征,并旋转坐标轴,提取多角度结构特征;然后将字符从中心点到外边框划分为K层矩形子层,提取每层图像的灰度特征,最后以两种多尺度特征构建神经网络模型,并预测测试集合样本。将该算法实际用于以MNIST字体库构建的两个数据集识别,其精度高达99.8%,并能有效降低倾斜等手写字体的随意性影响。
关键词
多尺度
手写体数字识别
多角度结构特征
多层次灰度特征
Keywords
multi
-scale
Handwritten
numeral
recognition
multi
-angle
structural
features
multi
-
level
grayscale
pixel
features
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多尺度特征和神经网络相融合的手写体数字识别
赵元庆
吴华
《计算机科学》
CSCD
北大核心
2013
14
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部