期刊文献+
共找到802篇文章
< 1 2 41 >
每页显示 20 50 100
深度学习目标检测方法综述 被引量:212
1
作者 赵永强 饶元 +1 位作者 董世鹏 张君毅 《中国图象图形学报》 CSCD 北大核心 2020年第4期629-654,共26页
目标检测的任务是从图像中精确且高效地识别、定位出大量预定义类别的物体实例。随着深度学习的广泛应用,目标检测的精确度和效率都得到了较大提升,但基于深度学习的目标检测仍面临改进与优化主流目标检测算法的性能、提高小目标物体检... 目标检测的任务是从图像中精确且高效地识别、定位出大量预定义类别的物体实例。随着深度学习的广泛应用,目标检测的精确度和效率都得到了较大提升,但基于深度学习的目标检测仍面临改进与优化主流目标检测算法的性能、提高小目标物体检测精度、实现多类别物体检测、轻量化检测模型等关键技术的挑战。针对上述挑战,本文在广泛文献调研的基础上,从双阶段、单阶段目标检测算法的改进与结合的角度分析了改进与优化主流目标检测算法的方法,从骨干网络、增加视觉感受野、特征融合、级联卷积神经网络和模型的训练方式的角度分析了提升小目标检测精度的方法,从训练方式和网络结构的角度分析了用于多类别物体检测的方法,从网络结构的角度分析了用于轻量化检测模型的方法。此外,对目标检测的通用数据集进行了详细介绍,从4个方面对该领域代表性算法的性能表现进行了对比分析,对目标检测中待解决的问题与未来研究方向做出预测和展望。目标检测研究是计算机视觉和模式识别中备受青睐的热点,仍然有更多高精度和高效的算法相继提出,未来将朝着更多的研究方向发展。 展开更多
关键词 目标检测 深度学习 小目标 多类别 轻量化
原文传递
支持向量机解决多分类问题研究 被引量:51
2
作者 郑勇涛 刘玉树 《计算机工程与应用》 CSCD 北大核心 2005年第23期190-192,共3页
支持向量机(SVM)是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。但在解决实际问题中遇到的多为多分类问题,通过研究现有提出的一些支持向量机多分类的方法,并进行分析比较,在一对一分类方法基础上提出具有... 支持向量机(SVM)是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。但在解决实际问题中遇到的多为多分类问题,通过研究现有提出的一些支持向量机多分类的方法,并进行分析比较,在一对一分类方法基础上提出具有容噪声的分类方法,通过标准数据集实验加以验证。 展开更多
关键词 支持向量机 多类分类 统计学习理论
下载PDF
多类支持向量机算法综述 被引量:33
3
作者 黄勇 郑春颖 宋忠虎 《计算技术与自动化》 2005年第4期61-63,共3页
传统的支持向量机是基于两类问题提出的,如何将其有效的推广至多类问题仍是一个有待研究的问题。本文中作者致力于对现有的几种较有成效的多类支持向量机做一介绍,并比较其优劣,以期对研究者以后的研究能有所启发。
关键词 支持向量机 多类 有向无环图 纠错编码支持向量机
下载PDF
基于多分类相关向量机的水电机组振动故障诊断 被引量:27
4
作者 易辉 梅磊 +2 位作者 李丽娟 刘宇芳 袁宇浩 《中国电机工程学报》 EI CSCD 北大核心 2014年第17期2843-2850,共8页
水电机组振动故障成因与故障征兆之间呈复杂的非线性关系,传统方法难以描述。当前研究常采用模式识别方法,如支持向量机、神经网络等实现振动故障诊断。该文在现有研究基础上,引进相关向量机(relevance vector machine,RVM)对诊断过程... 水电机组振动故障成因与故障征兆之间呈复杂的非线性关系,传统方法难以描述。当前研究常采用模式识别方法,如支持向量机、神经网络等实现振动故障诊断。该文在现有研究基础上,引进相关向量机(relevance vector machine,RVM)对诊断过程进行改进。相比传统方法,该文所提方法在学习过程中参数设置简单,在输出结果时给出了分类的可靠性,适合实际工程应用。同时,该方法在决策过程中,能够根据训练数据分布情况,自动选取决策结构,进一步提高诊断的速度与准确性。将该文所提诊断方法用于水电机组振动故障诊断实例,取得良好效果,验证了算法的有效性。 展开更多
关键词 相关向量机 水电机组 振动 故障诊断 多分类 决策导向图
下载PDF
多核多分类相关向量机在变压器局部放电模式识别中的应用 被引量:24
5
作者 尚海昆 苑津莎 +1 位作者 王瑜 张利伟 《电工技术学报》 EI CSCD 北大核心 2014年第11期221-228,共8页
针对传统单核分类器存在的固有二分类属性及识别信息不够完整的问题,首次提出了一种基于多核多分类相关向量机(MMRVM)的变压器局部放电模式识别新方法。首先选用不同的核函数对4种变压器局部放电信号特征进行映射,解决了不同数据源的问... 针对传统单核分类器存在的固有二分类属性及识别信息不够完整的问题,首次提出了一种基于多核多分类相关向量机(MMRVM)的变压器局部放电模式识别新方法。首先选用不同的核函数对4种变压器局部放电信号特征进行映射,解决了不同数据源的问题;然后利用粒子群优化算法对核参数进行优化选择,有效避免了核参数选择的主观性;最后利用构建出的MMRVM分类模型直接进行多分类,实现放电模式识别。文中以实验室4种典型缺陷的变压器局部放电信号为研究对象,采用传统单核SVM分类器、单核RVM分类器与MMRVM分类器对其进行分析对比。结果表明,MMRVM分类器融合了多种放电特征信息,能够较为全面的描述放电特征,与单核分类器相比具有更高的诊断准确率和更好的实用性。 展开更多
关键词 多核 多分类 相关向量机 变压器 局部放电 模式识别
下载PDF
基于结点优化的决策导向无环图支持向量机及其在故障诊断中的应用 被引量:22
6
作者 易辉 宋晓峰 +1 位作者 姜斌 王定成 《自动化学报》 EI CSCD 北大核心 2010年第3期427-432,共6页
支持向量机(Support vector machine,SVM)是利用离在线数据自动建立故障诊断模型的智能方法,它在多故障诊断时,必须先进行多分类扩展.决策导向无环图(Decision directed acyclic graph,DDAG)法是一种性能优秀的多分类扩展策略,但该方法... 支持向量机(Support vector machine,SVM)是利用离在线数据自动建立故障诊断模型的智能方法,它在多故障诊断时,必须先进行多分类扩展.决策导向无环图(Decision directed acyclic graph,DDAG)法是一种性能优秀的多分类扩展策略,但该方法的决策结果与结点的排部密切相关,而其结点的排部却是主观的,影响了诊断的正确率.本文提出一种根据故障数据的空间分布来优化结点排部的方法,它能够提高支持向量机诊断的正确率.采用该方法扩展的多分类支持向量机在变压器故障诊断中获得良好效果. 展开更多
关键词 支持向量机 故障诊断 多分类 决策导向无环图 结点优化
下载PDF
基于特征选择和多分类支持向量机的异常检测 被引量:20
7
作者 张晓惠 林柏钢 《通信学报》 EI CSCD 北大核心 2009年第S1期68-73,共6页
现有大部分的异常检测系统都是把数据分成正常和异常两类,这样可能会丢失重要信息。特征选择的目的是减少异常检测冗余特征的同时,高度保持和原始特征的一致性。实现了特征选择和多分类支持向量机的异常检测技术。采取粗糙集、SVDF、LGP... 现有大部分的异常检测系统都是把数据分成正常和异常两类,这样可能会丢失重要信息。特征选择的目的是减少异常检测冗余特征的同时,高度保持和原始特征的一致性。实现了特征选择和多分类支持向量机的异常检测技术。采取粗糙集、SVDF、LGP、MARS相结合的特征选择方法。同时利用多分类支持向量机把数据分成五类。通过实验分析,表明DoS攻击相对于其他3种攻击的漏报率是最高的。 展开更多
关键词 异常检测 粗糙集 支持向量机 多类分类 特征选择
下载PDF
Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine 被引量:18
8
作者 Lü Qiang Cai Jianrong +2 位作者 Liu Bin Deng Lie Zhang Yajing 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第2期115-121,共7页
With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and... With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and the safety of robot,the identification of mature citrus fruit and obstacle is the priority of robotic harvesting.In this work,a machine vision system,which consisted of a color CCD camera and a computer,was developed to achieve these tasks.Images of citrus trees were captured under sunny and cloudy conditions.Due to varying degrees of lightness and position randomness of fruits and branches,red,green,and blue values of objects in these images are changed dramatically.The traditional threshold segmentation is not efficient to solve these problems.Multi-class support vector machine(SVM),which succeeds by morphological operation,was used to simultaneously segment the fruits and branches in this study.The recognition rate of citrus fruit was 92.4%,and the branch of which diameter was more than 5 pixels,could be recognized.The results showed that the algorithm could be used to detect the fruits and branches for CHR. 展开更多
关键词 CITRUS machine vision citrus harvesting robot(CHR) branch IDENTIFICATION multi-class support vector machine(SVM)
原文传递
基于支撑向量机概率输出的高光谱影像混合像元分解 被引量:14
9
作者 吴波 张良培 李平湘 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第1期51-54,共4页
提出利用支撑向量机(SVM)后验概率来分解高光谱影像的混合像元,通过支撑向量机的输出值转化为两两配对的后验概率,再由两两配对的概率值求得多类后验概率,并以像元所属类别的后验概率作为地物的组分信息。实验结果表明,该方法能较好地... 提出利用支撑向量机(SVM)后验概率来分解高光谱影像的混合像元,通过支撑向量机的输出值转化为两两配对的后验概率,再由两两配对的概率值求得多类后验概率,并以像元所属类别的后验概率作为地物的组分信息。实验结果表明,该方法能较好地估计出混合像元的组分比。 展开更多
关键词 支撑向量机 多类 后验概率 像元分解 高光谱
下载PDF
Multi-Class Classification Methods of Cost-Conscious LS-SVM for Fault Diagnosis of Blast Furnace 被引量:14
10
作者 LIU Li-mei WANG An-na SHA Mo ZHAO Feng-yun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期17-23,33,共8页
Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discre... Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace. 展开更多
关键词 blast furnace fault diagnosis eosc-conscious LS-SVM multi-class classification
原文传递
用于图像分割的多分类高斯混合模型和基于邻域信息的高斯混合模型 被引量:14
11
作者 柴五一 杨丰 +1 位作者 袁绍锋 黄靖 《计算机科学》 CSCD 北大核心 2018年第11期272-277,287,共7页
高斯混合模型是一种简单有效且被广泛使用的图像分割工具。然而,传统的高斯混合模型在混合成分个数确定时的拟合结果不够精确;此外,由于没有考虑像素间的空间关系,导致分割结果易受噪声干扰,且分割精度不高。为弥补传统高斯混合模型的缺... 高斯混合模型是一种简单有效且被广泛使用的图像分割工具。然而,传统的高斯混合模型在混合成分个数确定时的拟合结果不够精确;此外,由于没有考虑像素间的空间关系,导致分割结果易受噪声干扰,且分割精度不高。为弥补传统高斯混合模型的缺陷,文中提出多分类高斯混合模型和基于邻域信息的高斯混合模型用于图像分割。多分类高斯混合模型对传统混合模型进行二重分解:传统混合模型由M个分布加权混合得到,多分类混合模型进一步将M个分布中的每一个分布分解成R个分布。即多分类高斯混合模型由M个高斯分布混合组成,而这M个分布分别由R个不同的分布混合得到,提高了模型的拟合精度。基于邻域信息的高斯混合模型通过对模型中的先验概率和后验概率添加空间信息约束,增强了像素间的信息关联和抗噪性。采用结构相似性、误分率和峰值信噪比等指标来评价分割结果。通过实验发现:与现有的混合模型分割方法相比,文中方法大幅提高了分割精度,且有效地抑制了噪声干扰。 展开更多
关键词 高斯混合模型 邻域信息 多分类 图像分割
下载PDF
An improved random forest classifier for multi-class classification 被引量:14
12
作者 Archana Chaudhary Savita Kolhe Raj Kamal 《Information Processing in Agriculture》 EI 2016年第4期215-222,共8页
The paper presents an improved-RFC(Random Forest Classifier)approach for multi-class disease classification problem.It consists of a combination of Random Forest machine learning algorithm,an attribute evaluator metho... The paper presents an improved-RFC(Random Forest Classifier)approach for multi-class disease classification problem.It consists of a combination of Random Forest machine learning algorithm,an attribute evaluator method and an instance filter method.It intends to improve the performance of Random Forest algorithm.The performance results confirm that the proposed improved-RFC approach performs better than Random Forest algorithm with increase in disease classification accuracy up to 97.80%for multi-class groundnut disease dataset.The performance of improved-RFC approach is tested for its efficiency on five benchmark datasets.It shows superior performance on all these datasets. 展开更多
关键词 Groundnut disease Improved-RFC Machine learning multi-class classification
原文传递
基于pinball损失的结构模糊多分类支持向量机算法 被引量:12
13
作者 李凯 李洁 《计算机应用》 CSCD 北大核心 2021年第11期3104-3112,共9页
针对多分类支持向量机(MSVM)对噪声较强的敏感性、对重采样数据的不稳定性以及泛化性能低等缺陷,将pinball损失函数、样本模糊隶属度以及样本结构信息引入到简化的多分类支持向量机(SimMSVM)算法中,构建了基于pinball损失的结构模糊多... 针对多分类支持向量机(MSVM)对噪声较强的敏感性、对重采样数据的不稳定性以及泛化性能低等缺陷,将pinball损失函数、样本模糊隶属度以及样本结构信息引入到简化的多分类支持向量机(SimMSVM)算法中,构建了基于pinball损失的结构模糊多分类支持向量机算法Pin-SFSimMSVM。在人工数据集、UCI数据集以及添加不同比例噪声的UCI数据集上的实验结果显示:所提出的Pin-SFSimMSVM算法与SimMSVM算法相比,准确率均提升了0~5.25个百分点;所提出的算法不仅具有避免多类数据存在不可分区域和计算速度快的优点,而且具有对噪声较好的不敏感性以及对重采样数据的稳定性,同时考虑了不同数据样本在分类时扮演不同角色的事实以及数据中包含的重要先验知识,从而使分类器训练更准确。 展开更多
关键词 多分类 支持向量机 pinball损失 结构信息 模糊隶属度
下载PDF
综合运输通道客流量分担模型研究 被引量:9
14
作者 卞长志 陆化普 《武汉理工大学学报(交通科学与工程版)》 2009年第4期611-614,共4页
分析了京沪运输通道内出行者的交通选择行为,表明出行者在交通方式选择决策时呈现明显的多用户特征.基于多用户多准则随机用户均衡理论构造了综合运输条件下的交通方式分离模型.以京沪运输通道的客运市场为例,分析了各种因素变化时,不... 分析了京沪运输通道内出行者的交通选择行为,表明出行者在交通方式选择决策时呈现明显的多用户特征.基于多用户多准则随机用户均衡理论构造了综合运输条件下的交通方式分离模型.以京沪运输通道的客运市场为例,分析了各种因素变化时,不同交通方式的客流变化情况. 展开更多
关键词 综合运输通道 多用户 多准则 随机用户均衡
下载PDF
基于模糊支持向量机的多分类算法研究 被引量:8
15
作者 张钊 费一楠 +1 位作者 宋麟 王锁柱 《计算机应用》 CSCD 北大核心 2008年第7期1681-1683,共3页
针对支持向量机理论中的多分类问题以及SVM对噪声数据的敏感性问题,提出了一种基于二叉树的模糊支持向量机多分类算法。该算法是在基于二叉树的支持向量机多分类算法的基础上引入模糊隶属度函数,根据每个样本数据对分类结果的不同影响,... 针对支持向量机理论中的多分类问题以及SVM对噪声数据的敏感性问题,提出了一种基于二叉树的模糊支持向量机多分类算法。该算法是在基于二叉树的支持向量机多分类算法的基础上引入模糊隶属度函数,根据每个样本数据对分类结果的不同影响,通过基于KNN的模糊隶属度的度量方法计算出相应的值,由此得到不同的惩罚值,这样在构造分类超平面时,就可以忽略对分类结果不重要的数据。通过实验证明,该算法有较好的抗干扰能力和分类效果。 展开更多
关键词 模糊支持向量机 多分类 二叉树
下载PDF
基于广义巢式Logit的多用户多准则随机用户平衡模型 被引量:9
16
作者 李雪飞 郎茂祥 《交通运输系统工程与信息》 EI CSCD 北大核心 2014年第4期139-145,共7页
介绍了广义巢式Logit的基本理论,在此基础上,考虑具有不同时间价值的多种用户类别出行者,构造了基于广义巢式Logit的多用户多准则随机用户平衡的等价数学规划模型,并对该模型的等价性和唯一性进行了证明.设计了求解所提出的随机用户平... 介绍了广义巢式Logit的基本理论,在此基础上,考虑具有不同时间价值的多种用户类别出行者,构造了基于广义巢式Logit的多用户多准则随机用户平衡的等价数学规划模型,并对该模型的等价性和唯一性进行了证明.设计了求解所提出的随机用户平衡模型的基于路径的相继平均法,通过一个算例验证了所设计算法的有效性.分析了分散系数变化对交通分配结果的影响,最后与多项式Logit的分配结果进行对比.算例结果表明,本文所提出的模型能够克服多项式Logit模型的IIA特性,设计的算法具有较高的求解效率. 展开更多
关键词 城市交通 随机用户平衡 相继平均法 广义巢式Logit 多用户 多准则
下载PDF
一种改进的BP-Adaboost算法及在雷达多目标分类上的应用 被引量:9
17
作者 李蓓 张兴敢 方晖 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期984-989,共6页
基于BP-Adaboost的目标分类算法用于雷达目标分类具有良好的效果.随着训练样本以及测试样本数增加,经典"一对多(One vs.Rest,OvR)"BP-Adaboost算法所需用时也随之增加.提出一种改进的多分类BP-Adaboost算法应用在雷达多目标... 基于BP-Adaboost的目标分类算法用于雷达目标分类具有良好的效果.随着训练样本以及测试样本数增加,经典"一对多(One vs.Rest,OvR)"BP-Adaboost算法所需用时也随之增加.提出一种改进的多分类BP-Adaboost算法应用在雷达多目标分类上,在提高分类准确率的同时,有效地解决经典算法在多分类上时间开销过大的问题.该方法采用二进制方法重新表示样本数据类别,使用Adaboost算法将多个BP神经网络弱分类器集成起来学习,通过修改经典算法中的损失函数连续调整训练样本分布和弱分类器的权重,最终形成一个强分类器.对雷达高分辨率距离像(High Resolution Range Profile,HRRP)数据集进行分类仿真结果表明,相比于单个BP神经网络基学习器,所提算法的分类准确率提高了5%~10%,相比于经典的"一对多"BP-Adaboost算法,该算法所需用时仅为传统算法的1/2~1/3. 展开更多
关键词 ADABOOST 雷达高分辨率距离像 多分类 BP神经网络
下载PDF
基于多类指数损失函数逐步添加模型的改进多分类AdaBoost算法 被引量:7
18
作者 翟夕阳 王晓丹 +1 位作者 雷蕾 魏晓辉 《计算机应用》 CSCD 北大核心 2017年第6期1692-1696,共5页
多类指数损失函数逐步添加模型(SAMME)是一种多分类的Ada Boost算法,为进一步提升SAMME算法的性能,针对使用加权概率和伪损失对算法的影响进行研究,在此基础上提出了一种基于基分类器对样本有效邻域分类的动态加权Ada Boost算法SAMME.R... 多类指数损失函数逐步添加模型(SAMME)是一种多分类的Ada Boost算法,为进一步提升SAMME算法的性能,针对使用加权概率和伪损失对算法的影响进行研究,在此基础上提出了一种基于基分类器对样本有效邻域分类的动态加权Ada Boost算法SAMME.RD。首先,确定是否使用加权概率和伪损失;然后,求出待测样本在训练集中的有效邻域;最后,根据基分类器针对有效邻域的分类结果确定基分类器的加权系数。使用UCI数据集进行验证,实验结果表明:使用真实的错误率计算基分类器加权系数效果更好;在数据类别较少且分布平衡时,使用真实概率进行基分类器筛选效果较好;在数据类别较多且分布不平衡时,使用加权概率进行基分类器筛选效果较好。所提的SAMME.RD算法可以有效提高多分类Ada Boost算法的分类正确率。 展开更多
关键词 集成学习 多分类 ADA Boost算法 多类指数损失函数逐步添加模型(SAMME) 动态加权融合
下载PDF
Lithium-bearing Pegmatite Exploration in Western Altun,Xinjiang,using Remote-Sensing Technology 被引量:4
19
作者 JIANG Qi DAI Jingjing +2 位作者 WANG Denghong WANG Chenghui TIAN Shufang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第2期681-694,共14页
Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-... Western Altun in Xinjiang is an important area,where lithium(Li)-bearing pegmatites have been found in recent years.However,the complex terrain and harsh environment of western Altun exacerbates in prospecting for Li-bearing pegmatites.Therefore,remote-sensing techniques can be an effective means for prospecting Li-bearing pegmatites.In this study,the fault information and lithologyical information in the region were obtained using the median-resolution remotesensing image Landsat-8,the radar image Sentinel-1 and hyperspectral data GF-5.Using Landsat-8 data,the hydroxyl alteration information closely related to pegmatite in the region was extracted by principal component analysis,pseudoanomaly processing and other methods.The high spatial resolution remote-sensing data WorldView-2 and WorldView-3 short-wave infrared images were used and analyzed by principal component analysis(PCA),the band ratio method and multi-class machine learning(ML),combined with conventional thresholds specified the algorithms used to automatically extract Li-bearing pegmatite information.Finally,the Li-bearing pegmatite exploration area was determined,based on a comprehensive analysis of the faults,hydroxyl alteration lithology and Li-bearing pegmatite information.Field investigations have verified that the distribution of pegmatites in the central part of the study area is consistent with that of Li-bearing pegmatites extracted in this study.This study provides a new technique for prospecting Li-bearing pegmatites,which shows that remote-sensing technology possesses great potential for identifying lithium-bearing pegmatites,especially in areas that are not readily accessible. 展开更多
关键词 remote sensing prospecting multi-class machine learning Li-bearing pegmatites western Altun
下载PDF
多目标优化算法在多分类中的应用研究 被引量:7
20
作者 尚荣华 胡朝旭 +1 位作者 焦李成 白靖 《电子学报》 EI CAS CSCD 北大核心 2012年第11期2264-2269,共6页
Cai等人用多目标粒子群算法(MOPSO)优化多目标聚类学习和分类学习框架(MSCC)的多目标问题时,种群只能得到少量的非支配解,不利于种群优化.而在此情况下,NSGA-Ⅱ由于采用了Pareto排序的方法,种群中会保留大量优秀的支配解,有利于种群优化... Cai等人用多目标粒子群算法(MOPSO)优化多目标聚类学习和分类学习框架(MSCC)的多目标问题时,种群只能得到少量的非支配解,不利于种群优化.而在此情况下,NSGA-Ⅱ由于采用了Pareto排序的方法,种群中会保留大量优秀的支配解,有利于种群优化,所以本文引进了NSGA-Ⅱ优化MSCC框架的多目标问题.通过对数据集的测试,验证了在NSGA-Ⅱ的优化下,对于大多数测试问题,MSCC框架设计的分类器的最大分类正确率高于MOPSO优化MSCC框架的结果.进而对实验结果做了进一步分析,发现了最大正确率不随多目标优化算法的优化过程而提高的问题. 展开更多
关键词 多分类 多目标优化 聚类 MOPSO NSGA-Ⅱ
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部