Single-cell analysis has been considered as a promising way to uncover the underlying mechanisms guiding the mysteries of life activities, which con siderably complements traditio nal en semble assays and yields novel...Single-cell analysis has been considered as a promising way to uncover the underlying mechanisms guiding the mysteries of life activities, which con siderably complements traditio nal en semble assays and yields novel in sights into cell biology. The adve nt of atomic force microscopy (AFM) provides a potent tool for investigati ng the structures and properties of n ative biological samples at the micro/na no scale un der near-physiological conditions, which promotes the studies of single-cell behaviors. In the past decades, AFM has achieved great success in single-cell observation and manipulation for biomedical applications, demonstrating the excellent capabilities of AFM in addressing biological issues at the single-cell level with unprecedented spatiotemporal resolution. In this article, we review the recent advances in single-cell analysis that has been made with the utilization of AFM, and provide perspectives for future progression.展开更多
Previous strategies for controlling the surface morphologies of polyvinyl alcohol(PVA)-based hydrogels,including freeze-drying and electrospinning,require a posttreatment process,which can affect the final textures an...Previous strategies for controlling the surface morphologies of polyvinyl alcohol(PVA)-based hydrogels,including freeze-drying and electrospinning,require a posttreatment process,which can affect the final textures and properties of the hydrogels.Of particular interest,it is almost impossible to control the surface morphology during the formation of PVA hydrogels using these approaches.The strategy reported in this study used the novel vortex fluidic device(VFD)technology,which for the first time provided an opportunity for one-step fabrication of PVA hydrogel films.PVA hydrogels with different surface morphologies could be readily fabricated using a VFD.By also reducing the crosslinking agent concentration,a self-healing gel with enhanced fracture stress(60%greater than that of traditionally made hydrogel)was achieved.Interestingly,the associated selfhealing property remained unchanged during the 260-s mechanical testing performed with the strain rate of 5%s-1.The VFD can effectively tune the surface morphologies of the PVA-based hydrogels and their associated properties,particularly the self-healing property.展开更多
基金National Natural Science Foundation of China (Nos. 6187325& 61503372, U1613220, and 61433017)Youth Innovation Promotion Association CAS (No. 2017243)CAS FEA International Partnership Program for Creative Research Teams.
文摘Single-cell analysis has been considered as a promising way to uncover the underlying mechanisms guiding the mysteries of life activities, which con siderably complements traditio nal en semble assays and yields novel in sights into cell biology. The adve nt of atomic force microscopy (AFM) provides a potent tool for investigati ng the structures and properties of n ative biological samples at the micro/na no scale un der near-physiological conditions, which promotes the studies of single-cell behaviors. In the past decades, AFM has achieved great success in single-cell observation and manipulation for biomedical applications, demonstrating the excellent capabilities of AFM in addressing biological issues at the single-cell level with unprecedented spatiotemporal resolution. In this article, we review the recent advances in single-cell analysis that has been made with the utilization of AFM, and provide perspectives for future progression.
基金International Research Grant(International Laboratory for Health Technologies)of South Australia for supportRaston CL is grateful for support from the Australian Research CouncilMa Y is grateful for the support from the National Natural Science Foundation of China(51679183)。
文摘Previous strategies for controlling the surface morphologies of polyvinyl alcohol(PVA)-based hydrogels,including freeze-drying and electrospinning,require a posttreatment process,which can affect the final textures and properties of the hydrogels.Of particular interest,it is almost impossible to control the surface morphology during the formation of PVA hydrogels using these approaches.The strategy reported in this study used the novel vortex fluidic device(VFD)technology,which for the first time provided an opportunity for one-step fabrication of PVA hydrogel films.PVA hydrogels with different surface morphologies could be readily fabricated using a VFD.By also reducing the crosslinking agent concentration,a self-healing gel with enhanced fracture stress(60%greater than that of traditionally made hydrogel)was achieved.Interestingly,the associated selfhealing property remained unchanged during the 260-s mechanical testing performed with the strain rate of 5%s-1.The VFD can effectively tune the surface morphologies of the PVA-based hydrogels and their associated properties,particularly the self-healing property.