变量筛选策略结合局部线性嵌入(local linear embedding,LLE)理论用于近红外光谱(near infrared spectroscopy,NIRS)定量模型优化。蒙特卡罗无信息变量消除方法(monte carlo uninformation variable elimination,MCUVE)和连续投影算法(s...变量筛选策略结合局部线性嵌入(local linear embedding,LLE)理论用于近红外光谱(near infrared spectroscopy,NIRS)定量模型优化。蒙特卡罗无信息变量消除方法(monte carlo uninformation variable elimination,MCUVE)和连续投影算法(successive projections algorithm,SPA)以及两者结合的变量筛选策略用于NIRS冗余变量的剔除;偏最小二乘回归(partial least squares regression,PLSR)和LLE-PLSR用于复杂样品光谱定量模型的构建。结果表明:MCUVE方法既能有效的提取信息变量,同时可以提高模型的预测精度;LLE-PLSR可以得到比PLSR方法更加准确的定量分析模型;MCUVE结合LLE-PLSR是一种有效的光谱定量分析方法。展开更多
文摘变量筛选策略结合局部线性嵌入(local linear embedding,LLE)理论用于近红外光谱(near infrared spectroscopy,NIRS)定量模型优化。蒙特卡罗无信息变量消除方法(monte carlo uninformation variable elimination,MCUVE)和连续投影算法(successive projections algorithm,SPA)以及两者结合的变量筛选策略用于NIRS冗余变量的剔除;偏最小二乘回归(partial least squares regression,PLSR)和LLE-PLSR用于复杂样品光谱定量模型的构建。结果表明:MCUVE方法既能有效的提取信息变量,同时可以提高模型的预测精度;LLE-PLSR可以得到比PLSR方法更加准确的定量分析模型;MCUVE结合LLE-PLSR是一种有效的光谱定量分析方法。