动量轮是卫星姿态控制系统的关键部件,对卫星的可靠性及整体寿命有直接影响。针对卫星动量轮的剩余寿命预测问题,提出一种基于Copula函数的多退化量下的寿命预测方法。首先,分析了影响动量轮寿命的关键因素,选择润滑剂剩余量和电流作为...动量轮是卫星姿态控制系统的关键部件,对卫星的可靠性及整体寿命有直接影响。针对卫星动量轮的剩余寿命预测问题,提出一种基于Copula函数的多退化量下的寿命预测方法。首先,分析了影响动量轮寿命的关键因素,选择润滑剂剩余量和电流作为退化量;其次,分别对单个退化量进行退化建模,得到动量轮剩余寿命的边缘分布函数;然后,通过Copula函数族来描述多退化量之间的相关性,并对边缘分布进行融合,得到动量轮剩余寿命的联合分布函数;最后,提出基于赤池信息准则(Akaike information criterion,AIC)模型评价的Copula函数选择方法。展开更多
Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principl...Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.展开更多
文摘动量轮是卫星姿态控制系统的关键部件,对卫星的可靠性及整体寿命有直接影响。针对卫星动量轮的剩余寿命预测问题,提出一种基于Copula函数的多退化量下的寿命预测方法。首先,分析了影响动量轮寿命的关键因素,选择润滑剂剩余量和电流作为退化量;其次,分别对单个退化量进行退化建模,得到动量轮剩余寿命的边缘分布函数;然后,通过Copula函数族来描述多退化量之间的相关性,并对边缘分布进行融合,得到动量轮剩余寿命的联合分布函数;最后,提出基于赤池信息准则(Akaike information criterion,AIC)模型评价的Copula函数选择方法。
基金supported by the National Natural Science Foundation of China (11072030)
文摘Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.